Microscopic images of pollen. The crushed-looking grains are mutants that lack proteins in their structural mesh, called a nuclear lamina. Junsik Choi, David Mankus, Margaret Bisher, Abigail Lytton-Jean, Mary Gehring; Whitehead Institute & Koch Institute
SHARE
Using microscopes to observe living things has been one of the most powerful ways to understand how biology works, at least since Dutch naturalist Antonie van Leeuwenhoek first zoomed in on bacteria in the 1600s. Today, high-magnification images can help design new medical tools, enrich our understanding of diseases, and explain how embryos develop. And, as shown by the 2023 winners from the MIT Koch Institute Image Awards, they can be works of art, too.
The above image shows Arabidopsis thaliana pollen with proteins removed from their nuclear lamina, a membrane of dense filaments that provides structure to cells. Humans who lack lamina (a mutation seen in some skeletal and muscular conditions) generally cannot survive for more than 20 years, according to the biologists at MIT’s Whitehead Institute and the Koch Institute who took this image. They stuck the grains to carbon tape and imaged them with a Zeiss Crossbeam microscope. Without these proteins, pollen also appear misshapen—underscoring the importance of this meshwork for plants as well.