Conservation | Popular Science https://www.popsci.com/category/conservation/ Awe-inspiring science reporting, technology news, and DIY projects. Skunks to space robots, primates to climates. That's Popular Science, 145 years strong. Thu, 01 Jun 2023 01:00:00 +0000 en-US hourly 1 https://wordpress.org/?v=6.1.1 https://www.popsci.com/uploads/2021/04/28/cropped-PSC3.png?auto=webp&width=32&height=32 Conservation | Popular Science https://www.popsci.com/category/conservation/ 32 32 This fake beach is a magnet for tourists—and peaceful endangered sharks https://www.popsci.com/environment/fake-beach-shark-conservation/ Thu, 01 Jun 2023 01:00:00 +0000 https://www.popsci.com/?p=544666
Angelsharks are masters of disguise, so spotting them is a challenge.
Angelsharks are masters of disguise, so spotting them is a challenge. Photo by Mike Sealey

In the Canary Islands, endangered angelsharks and European tourists are attracted to the same habitat which, for once, isn’t bad for the wildlife.

The post This fake beach is a magnet for tourists—and peaceful endangered sharks appeared first on Popular Science.

]]>
Angelsharks are masters of disguise, so spotting them is a challenge.
Angelsharks are masters of disguise, so spotting them is a challenge. Photo by Mike Sealey

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

Out in the Atlantic Ocean, roughly 100 kilometers off the northwest coast of Africa, lies an archipelago known as the Canary Islands, created millions of years ago by intense volcanic activity. The biggest and most populated island, Tenerife, rises from the deep-ocean floor to a series of peaks, one of which is the third-largest volcano in the world. Tenerife’s interior highlands are a moonscape, while its coastline of lava rock and sheer cliffs is pounded by surf. In contrast to most of the island’s stark geology, north of the island’s capital, Santa Cruz, is a long crescent-shaped beach of soft yellow sand, with groves of palm trees and a calm bay created by a long breakwater. This is Playa de las Teresitas, a magnet for northern European tourists craving winter sun.

But most of the people sunbathing on Teresitas are likely unaware of what lurks in the shallow waters lapping the shoreline. The bay—engineered and less than 10 kilometers from the Canaries’ second-largest city—is a surprising haven for pups of one of the world’s most critically endangered fish: the angelshark.


When the Spanish took control of the Canaries in the 1400s, they began cultivating cash crops: cochineal and sugar cane in the beginning, and later adding bananas, tomatoes, and other valuable commodities. For centuries, the islands’ economy thrived, but it was a fragile wealth. Over the years, livelihoods were threatened by cycles of crop disease, competition from cheaper markets, and lava flows that wiped out harvests and turned good agricultural land into barren terrain. In the 1950s, the boom in package tourism showed promise as a new cash crop. But while the islands had the sunshine, warm climate, and ease of access from Europe needed for this new industry, they were missing a vital element: picture-postcard sandy beaches.

Cue planners on Tenerife, who concocted an audacious plan to make over one of the island’s exposed lava-rock beaches. They chose a stretch of coastline close to Santa Cruz and expropriated the avocado farms and other smallholdings. Earthmovers leveled the foreshore and intertidal zone, and they constructed a breakwater over a kilometer long. And then, from the Western Sahara on Africa’s northwest coast, they shipped in the pièce de résistance: 240,000 tonnes of sand.

By 1973, this gargantuan project, environmentally questionable from today’s viewpoint, was complete. As anticipated, tourists arrived. Unanticipated was what their presence gave to one of the world’s most endangered fish species—visibility. Maybe angelsharks always gathered here, but until recently, no one really knew.

Endangered Species photo
To entice tourists, developers on Tenerife in the Canary Islands created Playa de Las Teresitas, a popular beach for tourists, locals, and in the shallow waters, angelsharks. Photo by Mike Workman/Shutterstock

Along Playa de las Teresitas, rows and rows of tourists lounge on beach chairs under umbrellas or pad across soft sand to cool down in the water. The breeze creates tiny sapphire-tipped waves on the water’s surface, a magical cover for what lies beneath—an angelshark nursery.

Female angelsharks regularly migrate to these ideally sheltered waters to give birth to anywhere between eight and 25 live pups, who remain in the shallows for about a year. Feeding on cuttlefish and other small prey, they grow to around 50 centimeters, about the same length as a newborn baby. Then they disappear for years until they are mature. Where they go is a mystery.For centuries, angelsharks had been common along the Atlantic coast of North Africa and Europe, as well as the Mediterranean. The ancient Greeks fished them; Pliny the Elder described the use of their skin to polish wood and ivory. On the British Isles, they were called monkfish for their resemblance to a monk’s hooded robes. With the advent of industrial bottom trawling in the late 1800s, they were easily caught and became a common food fish. By the 1960s, aggressive fishing of angelsharks, coupled with their extremely low reproductive rate, led to a dramatic decline in their populations. Targeting them eventually became commercially unviable and the name monkfish was relegated to another species, the anglerfish.

But angelsharks were still by-catch in other fisheries, and by the early 1970s, as developers barged Saharan sand to Tenerife, the fish were pushed close to extinction in most parts of the North Atlantic and the Mediterranean.

Endangered Species photo
Biologists on the Canary Islands only became aware of the islands’ robust population of angelsharks about a decade ago. Photo by Mike Sealey

In the European Union and the United Kingdom, it has become illegal to fish or retain angelsharks. If one is accidentally caught, fishers must return it alive to the sea. But the main threat to angelsharks remains the powerful bottom-trawling industry, which accounts for over 30 percent of fish landed in the European Union.

The story in the Canary Islands is slightly different. Michael Sealey, a marine biologist with the Angel Shark Project (ASP) in Tenerife, says that bottom trawling has never been as viable in the Canaries as in most of Europe and the Mediterranean. The seabed is mostly too deep, he explains, the underwater topography laced with jagged seamounts and reefs where fishing gear can get hung up. On top of that, the European Commission has halted all trawling in the Canaries since 2005.

But biologists only became aware about a decade ago that the Canaries host an angelshark population. Subsequently, in 2014, the Universidad de Las Palmas de Gran Canaria, Museum Koenig Bonn, and Zoological Society of London collaborated to establish ASP. The project’s goal: to gather data on critical habitats, movement patterns, and reproductive biology of angelsharks, and work with local communities and officials to protect the fish. Life history information is crucial for developing effective conservation strategies and protecting valuable, if improbable, habitat—like Playa de las Teresitas.

But angelsharks are not the easiest of research subjects. They are masters of disguise, so spotting them is a challenge. They have a peculiar flattened shape and spend most of their time lying on the ocean bottom partially covered by sand. Their coloring—reddish- or greenish-brown scattered with small white spots—helps them blend into the seabed.

Endangered Species photo
Angelsharks mostly stay out of the way of swimmers at busy beaches, such as Playa de las Teresitas. Photo by Mike Sealey

Gathering data on such elusive animals, with low population densities spread over a huge area, is labor intensive. Help has come in the form of citizen science: everywhere in the Canary Islands, recreational divers and fishers are invited to make online reports of any sightings or accidental catches of angelsharks. Through an ASP initiative, dive operators conduct friendly competitions to see which company can record the most sightings, thereby increasing data collection, particularly from citizen scientists.

Rubén Martinez, a dive instructor in Lanzarote, the easternmost island of the Canaries, is a keen advocate of angelsharks and regularly volunteers for ASP surveys. He helps with procedures such as tagging the fish with either spaghetti tags—an easily attached plastic loop—or acoustic tags. Both are done on the spot without having to catch the fish or lift it out of the water. “We work in a team and practice beforehand,” Martinez says. After an angelshark has been spotted in the sand, the team places a mesh attached to a sturdy frame over the animal. They take a small sample of fin for DNA analysis and attach a tag to the base of the dorsal fin. The whole procedure, when done properly, takes less than a minute.

Endangered Species photo
A tagging program initiated by the Angel Shark Program in the Canary Islands has led to a wealth of data. Photo by Mike Sealey

Surveys have shown that other beaches in the Canary Islands are also potential nursery sites. Interestingly, most of them have been altered, like Teresitas, to make them more attractive to people. On Lanzarote, Playa Chica boasts another long sweep of imported sand. It’s a magnet for divers—as well as a spectacular and easily accessible site—so the number of sightings of mature angelsharks off this shoreline is one of highest in the whole archipelago. How do the sharks react to these shoals of wetsuited humans? Alba Esteban Pacheco, a biologist and former dive instructor with Euro Divers Lanzarote, admits that while there have been instances of divers getting too close to the sharks, most dive companies are sensitive in this regard and brief their clients well. They have little choice: in 2019, Spain introduced legislation in the Canaries that made disturbing the sharks or harming their habitat and breeding grounds a criminal act subject to large fines.

Pacheco is very clear that she keeps her dive clients at least the recommended one meter distance from any angelsharks they find hiding in the sand. “Also,” she says, “these days, with everyone videoing everything and posting it on social media, it’s hard for divers to step out of line.”

But is this enough? Eva Meyers, a cofounder of ASP, acknowledges that the diving community plays a crucial role in conservation of the species. But she adds that much more needs to be done to ensure the long-term survival of angelsharks in areas like Playa Chica.

Endangered Species photo
Angelsharks have become a magnet for recreational divers from around the world. Photo by Frank Schneider/imageBROKER/Alamy Stock Photo

A recovery plan ASP developed with local authorities is in the final stages. It will include measures such as signage along sensitive coastlines and establishing a code of conduct for divers throughout the Canaries.

Among international dive communities, the word is out about the chance to see mature angelsharks in the Canaries, and this is a growing part of the tourism sector. Indeed, shark diving all over the world is a boon to economies. It generates over US $24-million yearly in the Canaries. Globally, shark-diving tourism generates over $300-million yearly, and local communities benefit much more from shark diving than from shark fishing. In some cases, this has led to the creation of marine reserves, such as in Fiji, which help other marine species as well.

Many divers may now be cognizant of the fragility of the angelshark population, but what about all those people splashing about and swimming in the all-important nursery areas just off the beaches? Sealey thinks that human activity in the shallow nursery areas influences angelshark behavior. On busy beaches like Teresitas, juveniles normally retreat to deeper water during the day when lots of people are around. During the COVID-19 pandemic, restrictions kept people off the beach. After almost two years of peace, angelsharks seemed unprepared for the people wading back into the water, as swimmers reported an unusual number of bites soon after restrictions lifted. The fish rely on their camouflage for protection, but when stepped on, they might lunge up from their hiding place and bite, though they usually swim away. Known locally as “gummings,” the bites are not serious and rarely draw blood. But the increase in gummings was an indication that the juveniles had adapted to remaining hidden in the shallows 24/7 to conserve energy. Post-pandemic, angelsharks have adapted again, by heading into deeper water earlier in the day and avoiding interactions with humans, as do many other urban wildlife species.

Back in the 1970s, did angelsharks also adapt to the Canaries’ headlong efforts to redesign itself for tourists? It’s intriguing to think that the massive, environmentally disruptive projects to remake beaches could have accidentally enhanced the habitat for one of the world’s rare fish species. But what’s clear is that after the breakwater was built and the sand arrived, people followed, and in the calm, shallow waters they began to see baby angelsharks. And unlike how many an association between humans and wildlife ends—in conflict and dead animals—this time it led to conservation.

This article first appeared in Hakai Magazine and is republished here with permission.

The post This fake beach is a magnet for tourists—and peaceful endangered sharks appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Every drop of the Colorado River counts. So what about evaporation? https://www.popsci.com/environment/colorado-river-evaporation/ Tue, 30 May 2023 10:00:00 +0000 https://www.popsci.com/?p=544276
Colorado River low water levels after drought and evaporation in Lake Powell, Utah, seen from above
A bathtub ring seen above the waterline around Lake Powell was created during drought that reduced the flow of the Colorado River on April 15, 2023. RJ Sangosti/MediaNews Group/The Denver Post via Getty Images

The biggest reservoirs on the Colorado River are disappearing. But the issue of evaporation is not so cut and dry.

The post Every drop of the Colorado River counts. So what about evaporation? appeared first on Popular Science.

]]>
Colorado River low water levels after drought and evaporation in Lake Powell, Utah, seen from above
A bathtub ring seen above the waterline around Lake Powell was created during drought that reduced the flow of the Colorado River on April 15, 2023. RJ Sangosti/MediaNews Group/The Denver Post via Getty Images

For more than a hundred years, California, Arizona, and Nevada never accounted for evaporation on the lower basin of the Colorado River as they divided its water between themselves and later with Mexico. Their logic held that as long as there was more water than people used, they could ignore small losses from natural processes. More importantly, it was politically fraught—for decades, the lower basin states have been unable to reach an agreement about how evaporation should be taken into account when sharing the river’s waters. Even as a 23-year-long megadrought sucked moisture out of the already arid region, evaporation stayed off the books with decision making.

But now, as water managers scramble to find a solution to a river that’s been overused, mostly for irrigation-heavy crops like livestock feed, they’re forced into a harsh reality: every drop counts, including those that disappear into the air. 

In August 2022, the Biden administration ordered California, Arizona, and Nevada to cut their annual allotments from the river by significant amounts. Last month, the White House released a plan outlining two options, which would reduce the states’ use of the river by as much as one quarter: evenly split reductions on the lower basin, which divides the river’s flow from the tip of Arizona down to northern Mexico, between the three states, or make reductions based on senior water rights, which means fewer cuts for California. On May 22, after much politicking, the states proposed an alternative deal that pledges to use 13 percent less water from the river overall. But it’s still unclear if and how the proposed plan accounts for evaporation. 

Colorado River map of upper basin and lower basin
The lower basin of the Colorado River stretches west from the northern border of Arizona, down to Mexico. USGS

How much water is evaporating from the lower basin of the Colorado River?

One way to measure how much water dries up in the system each year is by looking at the evaporation losses on Lake Mead and Lake Powell, the nation’s two largest reservoirs, located in Nevada and Arizona and Utah and Arizona, respectively. About 1.9 million acre-feet or 13 percent of the water from the reservoirs across the entire river is lost to evaporation each year, says Jack Schmidt, director of the Center for Colorado River Studies at Utah State University. 

In particular, the lower basin (which includes Lakes Mead, Mohave, Havasu, and a few smaller mainstream reservoirs) lost an average of 906,000 acre-feet of water per year to evaporation from 2016 to 2020, according to Schmidt, who cites data from the Bureau of Reclamation. To put that number into context, Nevada can legally use about 300,000 acre-feet per year with the existing deal. “The evaporation of water in the lower basin is equal to three Nevadas. Some people would say that’s a big number,” Schmidt says. Other estimates put the amount of water lost to evaporation even higher at about 1.5 million acre-feet per year, or about five Nevadas.

But the overall amount of water that evaporates hasn’t actually changed that much in the past decade. That’s because there’s just less water in the reservoirs, which means there’s less water to lose,” according to Katherine Earp, a hydrologist for the Nevada Water Science Center. At the same time, she adds, as the reservoirs become shallower, the water becomes warmer, and evaporation increases slightly.

[Related: See inside Glen Canyon Dam as Lake Powell levels drop]

Evaporation occurs when energy, usually in the form of heat, turns a liquid into gas. In this case, sunlight heats up water from the reservoirs and transforms it into water vapor. While the process seems straightforward, many factors affect how much evaporation occurs on the reservoirs. “It’s the sun; it’s dry winds sweeping across the reservoirs; it’s whether or not it’s cloudy,” Schmidt says. “It’s all about the heat and the relative humidity of the air over the reservoir.” A warming climate can accelerate those drivers as well, he says.

Earp cautions that scientists don’t know how much climate change and evaporation will cut into water held in the lower basin. She says there are two factors that could see direct impacts: the reservoirs’ temperature and depth. “Those are changing as the [lakes along the Colorado River] are changing,” she says. “Most of the evaporation is being done right at the surface with the wind. So that’s not changing. We’ve always had a big hot desert—we will continue to have a big hot desert.”

Annual drought and precipitation conditions from 1895 to 2023 on the Colorado River presented on a spike chart with red and blue tones
The Standardized Precipitation Index (SPI) measures water supply, specifically precipitation. SPI captures how observed precipitation (rain, hail, snow) deviates from the climatological average over a given time period—in this case, over the 9 months leading up to the selected date. Red hues indicate drier conditions, while blue hues indicate wetter conditions. Data are available monthly from 1895–present. US Drought Monitor

What can states in the Colorado River deal do to fight evaporation?

Even if the states took immediate action to prevent evaporation on the Colorado River, it wouldn’t be simple. The reservoirs are too big for quick fixes. “People put covers on their swimming pools and hot tubs,” Schmidt says. “You’re not going to do any of that on Lake Powell and Lake Mead—these are reservoirs are more than 100 miles long.” Instead, he outlines two potential solutions: consolidating water from the two major reservoirs into one or pumping some of the water underground. 

Schmidt did the math behind the first option. In a white paper published in 2016, he examined how much water might be saved if the lower basin states fill Lake Mead and put any remaining water into Lake Powell. “Right now we manage the system to equalize the storage contents in Lake Mead and Lake Powell, and so we sort of maximize the surface area exposed to the sun,” he says. But he found the savings would be minimal, about 50,000 acre-feet of water across the two reservoirs, and says it should be used as a second-tier strategy.

[Related: Solar panels and water canals could form a real power couple in California]

In the second option, water from the reservoirs would slowly be cached underground. Arizona and California already store some water underground in recharge basins with the intention to put water back into local aquifers. But there’s a risk of not being able to track and recover all of the water that seeps back into the ground. Still, Schmidt says recharge basins might be a good option if evaporation gets worse. “It’s a technique trusted by water managers,” Schmidt says. “Yes, it’s uncertain. But those uncertainties do not concern people enough that they don’t do it.”

Earp says the subterranean-storage strategy might be difficult in southern Nevada, where the geology can’t store such large volumes of water. “When users can’t use all the water, they do store excess in smaller orders in Arizona and Las Vegas. But doing the whole lake is a much bigger scale thing,” she says. “I don’t know if it would work.”

Both Earp and Schmidt agree that evaporation will keep playing a role in negotiations over the lower basin. “The most fundamental attribute of the river is it’s fully tapped out,” Schmidt says. “When the natural flow of the river system declines, and you begin to account for everything (because you must), then evaporation is a significant process. And somebody’s got to account for it.”

The post Every drop of the Colorado River counts. So what about evaporation? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Sloth schedules are surprisingly flexible https://www.popsci.com/environment/sloth-environment-ecology-behavior/ Mon, 29 May 2023 17:00:00 +0000 https://www.popsci.com/?p=543546
A sloth hangs in a tree in Costa Rica. The mammals have the slowest digestive system of any animal on Earth. It can take sloths two weeks to digest an entire meal, and they sleep about 20 hours a day to conserve energy.
Sloths the slowest digestive system of any animal on Earth. It can take the mammals two weeks to digest an entire meal, and they sleep about 20 hours a day to conserve energy. Deposit Photos

These cryptic critters use lack of activity to their advantage.

The post Sloth schedules are surprisingly flexible appeared first on Popular Science.

]]>
A sloth hangs in a tree in Costa Rica. The mammals have the slowest digestive system of any animal on Earth. It can take sloths two weeks to digest an entire meal, and they sleep about 20 hours a day to conserve energy.
Sloths the slowest digestive system of any animal on Earth. It can take the mammals two weeks to digest an entire meal, and they sleep about 20 hours a day to conserve energy. Deposit Photos

As they creep through tropical environments appearing not to have a care in the world, sloths give off some of the chillest vibes in the animal kingdom. This relaxed and elusive nature does make studying sloths a bit difficult, but a study published May 29 in the journal PeerJ Life & Environment is shedding some new light on activity patterns and behaviors adaptations of two sloth species.

[Related: Sloths aren’t the picky eaters we thought they were.]

The team looked at Bradypus variegatus and Choloepus hoffmanni, two sloth species that live in the lowland rainforests of Costa Rica’s Caribbean coast. Costa Rica is home to six species of sloths, who have the slowest digestive system of any animal on Earth. It can take the mammals two weeks to digest an entire meal, and they sleep about 20 hours a day to conserve energy. 

Using micro data loggers, the team continuously monitored the behavior of both three-toed sloths (Bradypus) and two-toed sloths (Choloepus) for periods ranging from days to weeks. These recordings enabled the team to explore how fluctuating environmental influences sloth activity and how that correlates with their uniquely chill and low-energy lifestyle. 

A sloth from the study wearing a micro data logger
A sloth from the study wearing a micro data logger. CREDIT: The Sloth Conservation Foundation.

Choloepus sloths are cathemeral, meaning that they have irregular variable periods of activity throughout a 24-hour cycle. Cathemeral behavior allows them to take advantage of better environmental conditions while minimizing the risk of predation. 

The study also observed a large amount of variability in activity levels between the animals and also within individual sloths. This flexibility suggests that the animals have developed diverse strategies to adapt to their surroundings, which enhances their chances of survival when the environment fluctuates. 

The team initially expected that daily temperatures, which can hit the mid-90s, would influence sloth activity, but their observations did not support that initial hypothesis. However, Bradypus sloths did increase their night time activity on colder nights and the nights that followed colder days. The authors believe that this indicates a potential correlation between sloth behavior and temperature variations.

[Related: Our bravest ancestors may have hunted giant sloths.]

While this study adds more understanding to sloth ecology, it also highlights the importance of preserving and protecting tropical rainforests and their unique inhabitants. According to Global Forest Watch, Costa Rica lost about 2.4 percent of its forest cover between 2000 and 2020, but the country has gained international recognition for its efforts to mitigate climate change and promote animal welfare.

“Understanding the drivers of sloth activity and their ability to withstand environmental fluctuations is of growing importance for the development of effective conservation measures, particularly when we consider the vulnerability of tropical ecosystems to climate change and the escalating impacts of anthropogenic activities in South and Central America,” the team wrote in the paper.

As these tropical ecosystems become more vulnerable due to human-made climate change, understanding wildlife patterns are crucial for conservation methods. While long-term observational research is a challenge, this study could pave the way for more studies on this cryptic and elusive species. 

The post Sloth schedules are surprisingly flexible appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Scientists and Indigenous people team up to build a kelp seed bank https://www.popsci.com/environment/kelp-seed-bank-washington/ Mon, 29 May 2023 01:00:00 +0000 https://www.popsci.com/?p=543525
Kelps provide food and habitat for myriad coastal creatures.
Kelps provide food and habitat for myriad coastal creatures. DepositPhotos

In Washington State, the Jamestown S’Klallam Tribe’s new preservation facility offers a back-up plan for an uncertain future.

The post Scientists and Indigenous people team up to build a kelp seed bank appeared first on Popular Science.

]]>
Kelps provide food and habitat for myriad coastal creatures.
Kelps provide food and habitat for myriad coastal creatures. DepositPhotos

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

Kelp is common along temperate shorelines around the world. For millennia, this large brown algae has been vital to coastal Indigenous peoples. In Washington State and British Columbia, kelp is a traditional food source, a focus for commercial cultivation, and habitat for critically endangered and threatened species like rockfish and young salmon. It’s hard to overstate kelp’s value. For the Jamestown S’Klallam Tribe, says shellfish biologist Annie Raymond, “you can’t quantify how important this biodiversity is, culturally.”

But over the past four decades, warming water and other factors have been killing kelps across the Salish Sea. So this summer, Raymond and her team will be hunting for kelp spores—colloquially called seeds—in the Juan de Fuca Strait, part of an ongoing effort to build an emergency fund for kelps, says Raymond, and ensure their future in the tribe’s traditional territory.

To face the pressing need to preserve kelp biodiversity, the Jamestown S’Klallam Tribe is partnering with the Puget Sound Restoration Fund (PSRF) and other tribes, universities, and organizations to expand a seed bank for Washington kelps as part of the Puget Sound Kelp Conservation and Recovery Plan.

Begun in 2010 by researchers at the University of Wisconsin–Milwaukee, the existing seed bank houses a collection of bull kelp spores from the Washington coast. Currently, the spores are housed in Wisconsin, but in the coming months, the collection will be moved to a US National Oceanic and Atmospheric Administration (NOAA) Fisheries research station in Manchester, Washington.

The expanding seed bank, says Raymond, is designed to preserve vulnerable kelp species for future restoration. While the tribe will only collect spores along the Juan de Fuca Strait, “the seed bank allows the tribe to contribute to habitat protection,” she says. “We want to help build resilience across the region.” The PSRF will also contribute to the seed bank, sampling sites along the Washington coast.

Jodie Toft, PSRF’s deputy director, says it’s taken years to build the infrastructure necessary to house such a precious resource at the Manchester Research Station for the long haul. Although the seed bank will house thousands of samples in a refrigerator no bigger than one in a typical kitchen, “we needed to make sure that our kelp lab was going to be able to keep the seed bank alive,” says Toft.

Unlike with many terrestrial plant seeds, which can be dried and stored for decades and remain viable, storing kelp for extended periods is more complex. To reproduce, explains Raymond, kelps release zoospores that develop into male and female gametophytes. To keep them viable, scientists store kelp gametophytes under red light, in low iron environments, or in a freezer, which puts it in a kind of arrested development. This means that the new bank needed to keep conditions tightly controlled, with emergency measures in case the power goes out.

The PSRF seed bank is just one of several kelp seed banks in California, Oregon, Alaska, and British Columbia. Simon Fraser University plant biologist Liam Coleman, who is working to start another kelp seed bank in British Columbia, says there’s an urgent need to make and maintain these kinds of biobanks. “The number one priority is just to make sure that biodiversity is backed up,” says Coleman. By preserving genetic diversity, scientists hope to give species the best chance they can to cope with future environmental challenges.

Seed banks will also give people in the future a chance to reforest kelps with the same genes that existed in the region in the first place, maximizing the chances that kelps will thrive.

“The gold standard for restoration is to replicate what was lost in the place where it was lost,” says Toft. Raymond hopes restoration in the future won’t be necessary. But if it is, and all goes as planned, “even 50 or 100 years in the future” the Jamestown S’Klallam Tribe will be able to access the seed bank.

It’s not just the Jamestown S’Klallam who will benefit. Todd Woodard, the infrastructure and resources executive director of the Samish Indian Nation, says that in Samish territory, kelp populations have declined by 36 percent from 2006 to 2016. Woodward expects his community will use the seed bank to reseed some of their restoration sites.

Yet as NOAA’s Manchester seed bank nears completion, the Jamestown S’Klallam Tribe will have to make crucial decisions about which kelp species to preserve. “We know bull kelp will be one,” says Raymond, “but there are also a number of understory kelps that we want to study.”

Time, however, is already running short for Salish Sea kelps. Biodiversity is still high in the Juan de Fuca Strait, but other parts of Puget Sound have already lost nearly all of their bull kelp, and for some remaining populations, genetic diversity is exceedingly low. That’s why Raymond knows they need to work fast.

“The tribe has countless cultural resources that are intertwined with kelp,” she says. “You don’t know what’s going to happen in the future.”

This article first appeared in Hakai Magazine and is republished here with permission.

The post Scientists and Indigenous people team up to build a kelp seed bank appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Wetlands lose some environmental protections in new Supreme Court ruling https://www.popsci.com/environment/supreme-court-water-ruling/ Fri, 26 May 2023 12:00:00 +0000 https://www.popsci.com/?p=543948
A sign that reads "Protect Our Waters" outside of the US Supreme Court before a rally to call for protection of the Clean Water Act on October 3, 2022. As the term began, the court was hearing arguments in the case of Sackett v. Environmental Protection Agency.
A sign outside of the US Supreme Court before a rally to call for protection of the Clean Water Act on October 3, 2022. As the term began, the court was hearing arguments in the case of Sackett v. Environmental Protection Agency. Tom Williams/CQ-Roll Call, Inc via Getty Images

The 5-to-4 decision is a huge setback for the EPA and the Clean Water Act.

The post Wetlands lose some environmental protections in new Supreme Court ruling appeared first on Popular Science.

]]>
A sign that reads "Protect Our Waters" outside of the US Supreme Court before a rally to call for protection of the Clean Water Act on October 3, 2022. As the term began, the court was hearing arguments in the case of Sackett v. Environmental Protection Agency.
A sign outside of the US Supreme Court before a rally to call for protection of the Clean Water Act on October 3, 2022. As the term began, the court was hearing arguments in the case of Sackett v. Environmental Protection Agency. Tom Williams/CQ-Roll Call, Inc via Getty Images

On May 25, the Supreme Court of the United States cut back the Environmental Protection Agency’s (EPA) ability to regulate wetlands in another setback for the landmark Clean Water Act. In the 5 to 4 ruling, the court said that the law does not allow the EPA to regulate the discharges into the wetlands that are near a body of water, unless the wetland has a unless they have “a continuous surface connection” to those waters. 

[Related: The EPA’s roll back of the Clean Water Act could impact drinking water for millions of Americans.]

The issue before the court was the reach of the 51-year-old Clean Water Act and how courts should determine what counts as “waters of the United States” for the purposes of legal protection. In 2006, the court ruled in two consolidated cases that wetlands are protected by the Clean Water Act if they have a “significant nexus” to regulated waters. Business interests and property rights groups sought to narrow the regulations in wetlands and areas that are directly connected to “navigable waters,” like lakes and rivers.

This case–Sackett v. Environmental Protection Agency–concerned Michael and Chantell Sackett, a couple who wanted to build a home on what an appeals court called “a soggy residential lot” near Priest Lake in Idaho’s panhandle. The Sacketts began construction in 2007 by filling in the land, and the EPA ordered them to stop. The agency threatened the couple with fines, saying  they must return their property to its original condition. Backed by successful conservative property rights group Pacific Legal Foundation, the Sacketts sued the EPA. A dispute regarding if the lawsuit was premature reached the Supreme Court in an earlier appeal and the justices ruled that the suit could proceed in 2012. Justice Alito said that the Clean Water Act gave the EPA too much power in a concurring opinion that same year.

Thursday’s 5 to 4 majority opinion is the latest decision in a trend where the conservative-leaning court has narrowed the reach of environmental regulations. In 2022, the court restricted the EPA’s authority to curb emissions from power plants in West Virginia v. Environmental Protection Agency

Writing for the majority, Justice Samuel Alito said that the EPA’s interpretation of its power went too far. Chief Justice John Roberts and Justices Clarence Thomas, Neil Gorsuch, and Amy Coney Barrett concurred that the Clean Water Act extends only to those “wetlands with a continuous surface connection to bodies that are waters of the United States in their own rights.”

Justices Sonia Sotomayor, Elena Kagan and Ketanji Brown Jackson, and Brett Kavanaugh, dissented, with Kagan writing a concurring opinion. They agreed that the Sacketts should prevail, but wrote that they would have ruled for them on more narrow grounds without changing what defines “waters in the United States.”

[Related: What would America be like without the EPA?]

In his own dissent, Justice Kavanaugh wrote, “By narrowing the [Clean Water] Act’s coverage of wetlands to only adjoining wetlands, the court’s new test will leave some long-regulated adjacent wetlands no longer covered by the Clean Water Act, with significant repercussions for water quality and flood control throughout the United States.”

Wetlands are some of the most diverse and productive ecosystems on the planet and the US has roughly 75.5 million acres of wetlands. They are an important tool against slowing the pace of human-made climate change, particularly in urban areas, while protecting communities from flooding and storms. 

Since 1972, the Clean Water Act has dramatically cut pollution in America’s waterways, leading to major rebounds of fish species. Since the wetlands like those at the center of the Sackett case have a close relationship with the larger water system of streams and rivers, the court’s ruling has major potential to impact the health and quality of all waterways in the United States. 

“This decision will cause incalculable harm. Communities across the country will pay the price,” Natural Resources Defense Council (NRDC) President & CEO Manish Bapna said in a statement following the ruling. “What’s important now is to repair the damage. The government must enforce the remaining provisions of law that protect the clean water we all rely on for drinking, swimming, fishing, irrigation and more. States should quickly strengthen their own laws. Congress needs to act to restore protections for all our waters.”

Correction (May 30, 2023): Kagan wrote a concurring opinion, not the dissenting opinion as this originally stated. We regret the error.

The post Wetlands lose some environmental protections in new Supreme Court ruling appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A deep sea mining zone in the remote Pacific is also a goldmine of unique species https://www.popsci.com/environment/clarion-clipperton-zone-mining-wildlife-biodiversity/ Thu, 25 May 2023 15:00:00 +0000 https://www.popsci.com/?p=543474
The sun over the ocean. Over 5,000 species could be at risk if deep sea mining begins in the Pacific Ocean's Clarion-Clipperton Zone.
Over 5,000 species could be at risk if deep sea mining begins in the Pacific Ocean's Clarion-Clipperton Zone. Deposit Photos

Up to 92 percent of the species in the Clarion-Clipperton Zone aren’t found anywhere else on Earth.

The post A deep sea mining zone in the remote Pacific is also a goldmine of unique species appeared first on Popular Science.

]]>
The sun over the ocean. Over 5,000 species could be at risk if deep sea mining begins in the Pacific Ocean's Clarion-Clipperton Zone.
Over 5,000 species could be at risk if deep sea mining begins in the Pacific Ocean's Clarion-Clipperton Zone. Deposit Photos

Industrial mining of the deep ends of the ocean for valuable minerals is becoming more of a possibility as companies search for new sources of needed minerals, such as cobalt and lithium. The devastating impacts that this noisy and extractive process could have on the ocean’s numerous species is front of mind for scientists around the world, particularly in the mineral-rich Clarion-Clipperton Zone (CCZ) of the Pacific Ocean. Now, experts are attaching some numbers to the concerns.

[Related: Deep-sea mining has murky aftereffects.]

A study published May 25 in the journal Current Biology found 5,578 different species in the CCZ, and roughly 88 to 92 percent of these species are entirely new to science. The authors compiled a CCZ checklist of all the species and records to better understand what may be at risk when mining begins. 

“We share this planet with all this amazing biodiversity, and we have a responsibility to understand it and protect it,” co-author and Natural History Museum London deep-sea ecologist Muriel Rabone said in a statement

Spanning six million square kilometers from Hawaii to Mexico, the CCZ is one of the most pristine wilderness regions in the world. According to NOAA, it is also home to polymetallic nodules that are a potential source of copper, nickel, cobalt, iron, manganese, and rare earth elements. These materials are becoming increasingly important for modern life, since they are used in making a range of electronics. Polymetallic nodules are also found in deeper regions of the Indian Ocean.

Ocean photo
A selection of deep-sea specimens from the museum’s collection. CREDIT: Trustees of the Natural History Museum London.

To study the CCZ, researchers travel throughout the Pacific Ocean using techniques such as using remote-controlled vehicles to travel the ocean. They also use simple box core sampling, where a study box is placed on the bottom of the ocean floor to collect samples.  

“It’s a big boat, but it feels tiny in the middle of the ocean. You could see storms rolling in; it’s very dramatic,” said Rabone. “And it was amazing—in every single box core sample, we would see new species.”

In the study, the team sifted through over 100,000 records of the creatures found in the CCZ taken during these expeditions. They found that only six of the new species found in the CCZ—including a carnivorous sponge, a nematode, and a sea cucumber—have been seen in other regions of the world. The most common type of animals in the CCZ are arthropods, worms, sponges, and echinoderms like sea urchins.

[Related: Even mining in shallow waters is bad news for the environment.]

“There’s some just remarkable species down there. Some of the sponges look like classic bath sponges, and some look like vases. They’re just beautiful,” said Rabone. “One of my favorites is the glass sponges. They have these little spines, and under the microscope, they look like tiny chandeliers or little sculptures.”

In the future, the team emphasizes the importance of increasing research efforts in the CCZ that are collaborative, cohesive, and multidisciplinary so that scientists and business alike can gain a deeper grasp of the region’s vast biodiversity. They also stress the importance of learning more about these new species, how they are connected to the greater environment around them, and the biogeography of the area to understand why some species cluster in specific regions more than others.   

“There are so many wonderful species in the CCZ,” said Rabone, “and with the possibility of mining looming, it’s doubly important that we know more about these really understudied habitats.”

The post A deep sea mining zone in the remote Pacific is also a goldmine of unique species appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Andean long-tailed chinchillas are mysteriously thriving on Chile’s coast https://www.popsci.com/environment/new-chile-chinchilla-species/ Thu, 25 May 2023 01:00:00 +0000 https://www.popsci.com/?p=543101
Camera trap footage captured a coastal long-tailed chinchilla moving about during the daytime—an exceedingly rare activity—near Antofagasta, Chile.
Camera trap footage captured a coastal long-tailed chinchilla moving about during the daytime—an exceedingly rare activity—near Antofagasta, Chile. Photo by Alejandro Peñaloza

Whether a new subspecies, a species, or just a new population, these coastal chinchillas act in ways scientists have never seen before.

The post Andean long-tailed chinchillas are mysteriously thriving on Chile’s coast appeared first on Popular Science.

]]>
Camera trap footage captured a coastal long-tailed chinchilla moving about during the daytime—an exceedingly rare activity—near Antofagasta, Chile.
Camera trap footage captured a coastal long-tailed chinchilla moving about during the daytime—an exceedingly rare activity—near Antofagasta, Chile. Photo by Alejandro Peñaloza

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

In 2020, on a rocky hillside overlooking the vast swell of the Pacific Ocean near the Chilean port city of Antofagasta, a local man out walking his dog stumbled upon the sun-bleached skull of a small mammal. Curious, he pocketed it and brought it to the attention of researchers Alejandro Peñaloza and Jaime Jiménez. The scientists were shocked. The skull belonged to a long-tailed chinchilla, a species typically found deep within the Chilean Andes Mountains. As far as scientists knew, chinchillas had never inhabited the coast.

“I couldn’t believe it at first,” says Jiménez, a researcher at the University of North Texas who has studied chinchilla ecology for over 30 years. “There were no past records of chinchillas in the area, and never on the coast, so it just didn’t make any sense.”

The excited researchers dug into the mystery. They quickly discovered a plethora of pint-sized paw prints in the sand and rodent scat strewn among the boulders, but what they really wanted was photographic evidence. The researchers baited camera traps with apple slices and, to their delight, captured dozens of images of the rodents. It was only when the scientists checked the cameras that they realized just how close they’d come to seeing the chinchillas—one image was snapped just 11 minutes after they’d left.

The footage shows that the coastal chinchillas are strikingly different from their Andean counterparts. As the scientists detail in a recent report, while the mountain chinchillas are larger with thick fur and rounded ears, the coastal chinchillas have smaller bodies, sleeker fur, and unusually elongated rabbit-like ears. Aside from their peculiar looks, the coastal chinchillas were also captured moving about in the daytime—a behavior never before seen in wild chinchillas.

“These animals are usually completely nocturnal, so it may be a sign of fewer predators or an adaptation to their environment,” says Jiménez.

The revelation that long-tailed chinchillas are inhabiting the coast is challenging scientists’ long-held assumptions about how these animals live. For one thing, says Fabian Jaksik, a member of the Chilean Academy of Sciences who was not directly involved in the research, the find “is significant because it’s the northernmost record of the long-tailed chinchilla in Chile ever, even historically speaking.”

Wildlife photo
The skull that led to the discovery of a coastal chinchilla population in Chile. Photo by Alejandro Peñaloza

The environment where the coastal chinchillas reside is also a world apart from the harsh and frigid deserts of the Andes. Sandwiched between the Atacama Desert and the Pacific Ocean, life flourishes along the coastal margin thanks to the proximity of the sea and its moderating effect on daily temperatures. A thick fog known as the camanchaca frequently rolls in on morning easterly winds and nourishes the region’s plants.

For researchers striving to learn more about these novel animals, however, even their palate is puzzling.

While the Andean chinchillas mainly eat grass, scientists aren’t quite sure what the coastal chinchillas eat. The hillsides they inhabit are absent of grasses but rich in flora that is either highly toxic or studded with spines and thorns. “It could be that they are eating something completely new or nibbling on a bit of everything and somehow digesting and surviving the toxins,” says Jiménez. “But this is just a hypothesis.”

With so many differences in appearance, behavior, and ecology, scientists aren’t quite sure what to make of these chinchillas. “The coastal chinchillas might be a subspecies or maybe even a new species,” says Jiménez. “We’ll only be able to answer these questions after we’ve understood these animals and their lives better.”

Beyond their enigmatic ecology, the coastal chinchillas are raising wider questions about the species’ future.

While Andean long-tailed chinchillas are still recovering from centuries of overhunting and face ongoing threats from habitat destruction for mining, the coastal chinchillas seem to be thriving. If they are the same species, the new population suggests long-tailed chinchillas are more abundant than previously thought, offering hope for their survival in the wild.

“This is probably a population that escaped overhunting due to its isolation,” says Peñaloza. “So there may be lots more out there waiting to be found.”

The post Andean long-tailed chinchillas are mysteriously thriving on Chile’s coast appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Chevron’s carbon offsets are mostly ‘junk,’ according to global watchdog investigation https://www.popsci.com/environment/chevron-carbon-offsets-junk-greenwashing/ Wed, 24 May 2023 13:30:00 +0000 https://www.popsci.com/?p=543093
Climate justice campaigners march from the Shell Centre to Trafalgar Square to demand urgent climate finance and reparations for loss and damage for global south communities on November, 12 2022 in London. The march was organized by the Climate Justice Coalition as part of a Global Day of Action called by African climate campaign groups at COP27.
Climate justice campaigners march from the Shell Centre to Trafalgar Square to demand urgent climate finance and reparations for loss and damage for global south communities on November, 12 2022 in London. The march was organized by the Climate Justice Coalition as part of a Global Day of Action called by African climate campaign groups at COP27. Mark Kerrison/In Pictures via Getty Images

The scathing new report from Corporate Accountability said 93 percent of the oil giant’s offsets were environmentally problematic.

The post Chevron’s carbon offsets are mostly ‘junk,’ according to global watchdog investigation appeared first on Popular Science.

]]>
Climate justice campaigners march from the Shell Centre to Trafalgar Square to demand urgent climate finance and reparations for loss and damage for global south communities on November, 12 2022 in London. The march was organized by the Climate Justice Coalition as part of a Global Day of Action called by African climate campaign groups at COP27.
Climate justice campaigners march from the Shell Centre to Trafalgar Square to demand urgent climate finance and reparations for loss and damage for global south communities on November, 12 2022 in London. The march was organized by the Climate Justice Coalition as part of a Global Day of Action called by African climate campaign groups at COP27. Mark Kerrison/In Pictures via Getty Images

Update May 25, 2023: This post has been updated with a comment from Chevron.

The already questionable $2 billion a year voluntary emissions offset market is facing even more scrutiny. An investigation by transnational corporate watchdog Corporate Accountability first reported in The Guardian found that carbon offsets from fossil fuel giant Chevron are mostly worthless—could also cause harm. The investigation found that the company relies on “junk” carbon offsets and “unviable” technologies. These actions do little to offset the company’s greenhouse gas emissions. 

The new research from Corporate Accountability found that between 2020 and 2022, 93 percent of the offsets that Chevron bought and counted towards their climate targets from voluntary carbon markets were actually too environmentally problematic to be considered as anything other than worthless or junk.

[Related: Many popular carbon offsets don’t actually counteract emissions, study says.]

Carbon offsets are tradable “rights” or certificates that allow the buyer to compensate for 1 ton of carbon dioxide or the equivalent in greenhouse gasses. These offsets are usually in the form of an investment in emissions-reducing environmental projects in other parts of the world. 

An investigation by The Guardian and Germany’s Die Zeit, and the nonprofit journalism outfit, SourceMaterial earlier this year found that the world’s leading provider of these offsets, Verra, may be making the climate worse. Verra is often used by major corporations like Shell and Disney, but over 90 percent of Verra’s most popular rainforest offset credits were discovered to be  “phantom credits” that do not result in “genuine carbon reductions.”

Carbon offsets are considered worthless or having low environmental integrity if the project is linked to a plantation, forest, or green energy project. This includes hydroelectric dams that don’t lead to any additional reductions in greenhouse gasses, or exaggerates the benefits and minimizes risks of emitting emissions, among some other factors.

Chevron often purchased offsets that focused on large dams, plantations, or forests, according to the report. It found that many of these “worthless” offsets are also linked to some alleged social and environmental harms. These harms are primarily in communities in the global south, which happen to face the most harm by the climate crisis that Big Oil helped create

“Chevron’s junk climate action agenda is destructive and reckless, especially in light of climate science underscoring the only viable way forward is an equitable and urgent fossil fuel phase-out,” Rachel Rose Jackson from Corporate Accountability told The Guardian.

Chevron is the second-largest fossil fuel company in the United States and its vast operations stretch north to Canada and the United Kingdom and south towards Brazil, Nigeria, and Australia. It reported over $35 billion in profits in 2022 and its projected emissions between 2022 and 2025 are equal to those from 364 coal-fired power plants per year. This is more than the total emissions of 10 European countries combined for a similar three-year period, according to the report.

[Related: BP made $28 billion last year, and now it’s backtracking on its climate goals.]

Chevron “aspires” to achieve net zero upstream emissions by 2050, largely relying on carbon offset schemes and carbon capture and storage to do this. Carbon offsets rely on environmental projects to cancel out a company’s greenhouse gas emissions.

The new report further argues that the widespread use of these worthless offsets undermines the company’s net zero aspiration. Their net-zero aspirations only apply to less than 10 percent of the company’s carbon footprint–the upstream emissions that are produced from the production and transport of gas and oil. It excludes the downstream or end use emissions that are due to burning fossil fuels.

“Any climate plan that is premised on offsets, CCS, and excludes scope 3 [downstream] emissions is bound to fail,” Steven Feit, fossil economy legal and research manager at the Center for International Environmental Law, told The Guardian. “It’s clear from this report and other research that net zero as a framework opens the door for claims of climate action while continuing with business as usual, and not moving towards a low-carbon Paris [agreement]-aligned 1.5-degree [2.7 degree] future.”

Bill Turenne, an external affairs coordinator from Chevron, added via email that Chevron believes the report is “biased against our industry and paints an incomplete picture of Chevron’s efforts to advance a lower carbon future.” The offsets reviewed in the Corporate Accountability report are “compliance-grade offsets accepted by governments in the regions where we operate,” Turenne said.

The post Chevron’s carbon offsets are mostly ‘junk,’ according to global watchdog investigation appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The Montreal Protocol had a dramatic ice-saving side effect https://www.popsci.com/environment/montreal-protocol-arctic-ice-melt/ Tue, 23 May 2023 18:00:00 +0000 https://www.popsci.com/?p=542915
A polar bear stands on sea ice.
Rapid melting of sea ice in the Arctic is the largest and most clear sign of human-made climate change. Deposit Photos

The United Nations treaty on CFCs is likely delaying the first ice-free Arctic summer by as much as 15 years.

The post The Montreal Protocol had a dramatic ice-saving side effect appeared first on Popular Science.

]]>
A polar bear stands on sea ice.
Rapid melting of sea ice in the Arctic is the largest and most clear sign of human-made climate change. Deposit Photos

The decades-old international treaty that banned ozone-depleting substances has successfully averted huge amounts of sea ice loss—delaying the first ice-free Arctic summer by as much as 15 years, according to a new study. The study published May 22 in the journal Proceedings of the National Academy of Sciences (PNAS) found that regulating these harmful substances helped delay further globalc heating.

[Related: Fixing the ozone hole was a bigger deal than anyone realized.]

In 1985, scientists first discovered a hole in the ozone layer over Antarctica on the Earth’s south pole. Representatives from countries around the world gathered to craft a treaty to protect the ozone layer, which shields the planet from harmful levels of ultraviolet radiation from the sun. The resulting Montreal Protocol was signed in 1987 and went into effect in 1989 with the purpose of reducing atmospheric concentrations of ozone-depleting substances (OSDs) that were commonly used in refrigerators, air conditioners, fire extinguishers, and aerosols. It remains the only United Nations treaty ratified by every country in the world

This new study demonstrates that the treaty’s impact depends on future emissions and the impact goes as far north as the Arctic. 

“The first ice-free Arctic summer–with the Arctic Ocean practically free of sea ice–will be a major milestone in the process of climate change, and our findings were a surprise to us,” study co-author and Columbia University geophysicist Lorenzo Polvani said in a statement. “Our results show that the climate benefits from the Montreal Protocol are not in some faraway future: the Protocol is delaying the melting of Arctic sea ice at this very moment. That’s what a successful climate treaty does: it yields measurable results within a few decades of its implementation.”

According to Polvani and other climate scientists, the rapid melting of sea ice in the Arctic is the largest and most clear sign of human-made climate change. The first completely ice-free Arctic summer will likely occur by 2050, largely due to increasing carbon dioxide concentrations in the atmosphere. Other powerful greenhouse gasses like ODS’ also contributed to this warming, but their concentrations in the atmosphere began to decline in the mid-1990s

In this new study, the two authors analyzed new climate model simulations and found that the changes implemented by the Montreal Protocol is delaying the first appearance of an ice-free Arctic summer by up to 15 years, depending on future carbon dioxide emissions. They compared the estimated warming from ODS’ with and without the Montreal Protocol under two scenarios of future carbon dioxide emissions from 1985 to 2050. If the Montreal Protocol had not been enacted, the estimated global mean surface temperature would be about 0.9°F warmer and the Arctic polar cap would be almost 1.8°F warmer in 2050, according to their results.

[Related: Fixing the ozone hole was a bigger deal than anyone realized.]

“This important climate mitigation stems entirely from the reduced greenhouse gas warming from the regulated ODSs, with the avoided stratospheric ozone losses playing no role,” co-author and University of Exeter applied mathematician and atmospheric scientist Mark England said in a statement. “While ODSs aren’t as abundant as other greenhouse gasses such as carbon dioxide, they can have a real impact on global warming. ODSs have particularly powerful effects in the Arctic, and they were an important driver of Arctic climate change in the second half of the 20th Century. While stopping these effects was not the primary goal of the Montreal Protocol, it has been a fantastic by-product.” 

Both authors stressed the importance of remaining vigilant to atmospheric concentrations as the ozone layer is healing, especially due to a slight rise in ODS concentrations from 2010 to 2020.  In 2016, an amendment to the Montreal Protocol (called the Kigali Amendment) that required the phase out of the production and consumption of some hydrofluorocarbons (HFCs) was added. While HFCs do not directly deplete ozone, they are powerful climate change-inducing gasses which can accelerate warming. An uptick in CFC use was detected in 2018 and tracked to China, but that was quickly fixed. Scientists say that the Kigali Amendment is estimated to avoid 0.5–0.9°F of warming by 2100, not including contributions from HFC-23 emissions.

The post The Montreal Protocol had a dramatic ice-saving side effect appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Colorado River deals pays Arizona, California, and Nevada $1.2 billion to use less water https://www.popsci.com/environment/colorado-river-water-drought-deal/ Tue, 23 May 2023 14:30:00 +0000 https://www.popsci.com/?p=542839
A bathtub ring seen above the waterline o the brown and red rocks around Lake Powell, Utah due to drought that reduced the flow of the Colorado River.
A bathtub ring seen above the waterline around Lake Powell, Utah due to drought that reduced the flow of the Colorado River on April 15, 2023. The flight for aerial photography was provided by LightHawk. RJ Sangosti/MediaNews Group/The Denver Post via Getty Images

The 'breakthrough' deal follows an unusually wet winter in the West.

The post Colorado River deals pays Arizona, California, and Nevada $1.2 billion to use less water appeared first on Popular Science.

]]>
A bathtub ring seen above the waterline o the brown and red rocks around Lake Powell, Utah due to drought that reduced the flow of the Colorado River.
A bathtub ring seen above the waterline around Lake Powell, Utah due to drought that reduced the flow of the Colorado River on April 15, 2023. The flight for aerial photography was provided by LightHawk. RJ Sangosti/MediaNews Group/The Denver Post via Getty Images

On May 22, the Biden Administration and the states along the Colorado River announced that they had reached an agreement to conserve an unprecedented amount of the river’s water supply. The Lower Basin states of Arizona, California, and Nevada have agreed to save an additional 3 million acre-feet of Colorado River Water in the Lower Basin by the end of 2026, or about 13 percent of these states’ total allocation of water from the river.

In return, the federal government will compensate the three states for three-quarters of the water savings, or about $1.2 billion. The money will come from the 2022 Inflation Reduction Actf and is intended to pay Native American tribes, farmers, cities, and others who will voluntarily forgo their supplies.

[Related: What California’s weird winter means for its water problems.]

The Colorado River is a critical water supply in the Western United States and 20 years of severe drought, population growth, and climate change have strained its supply. The three states in the river’s Lower Basin all agreed to take less water from the river for now, in an effort to keep the water levels from falling so low that it jeopardizes the water supply to major cities like Los Angeles and Phoenix, as well as some of the most productive farmland in the country.

The agreement follows almost a year of negotiations and numerous missed deadlines. The plan intended to protect both Lake Powell and Lake Mead—two of the largest reservoirs in the US. Recent  droughts have reduced the Colorado River’s natural water flow by roughly 20 percent. In summer 2022, the water levels in both reservoirs fell so low that officials worried that the hydroelectric turbines they powered might stop working. 

In June 2022, the federal government told the seven states that rely on the river—including Colorado, Utah, New Mexico, and Wyoming—that they must find a way to reduce their water use by two to four million acre-feet of water per year. An agreement was not reached among the states, and the federal government considered unilaterally imposing water cuts on those states last summer. 

The states had until May 30 to take a position on future unilateral reductions, but a deal was being negotiated behind closed doors to reach a deal and avoid imposing cuts that would likely  face legal challenges and delaying any serious action, according to The New York Times.

“There are 40 million people, seven states, and 30 Tribal Nations who rely on the Colorado River Basin for basic services such as drinking water and electricity. Today’s announcement is a testament to the Biden-Harris administration’s commitment to working with states, Tribes and communities throughout the West to find consensus solutions in the face of climate change and sustained drought,” Secretary of the Interior Deb Haaland said in a statement. “In particular I want to thank Deputy Secretary Tommy Beaudreau and Reclamation Commissioner Camille Calimlim Touton, who have led the discussions with Basin state commissioners, Tribes, irrigators, local communities, and valued stakeholders to reach this critical moment.”

[Related: What the Colorado River’s record lows mean for western US.]

The agreement runs through the end of 2026 and still needs to be formally adopted by the federal government. By 2026, all seven states that rely on the Colorado River may face a deeper water reckoning and the river’s decline is likely to continue

According to The Washington Post, Arizona’s commissioner to the Colorado River Tom Buschatzke emphasized that the deal is not the final outcome, and the parties have also agreed to a new proposal that will be analyzed by the Interior Department. 

“It is important to note that this is not an agreement — this is an agreement to submit a proposal and an agreement to the terms of that proposal to be analyzed by the federal government,” Buschatzke told reporters. “That is a really critical point for everyone to understand.”

The heavy snow and rain that fell in the West during the winter helped ease the crisis and gave the negotiators some breathing room, but this winter was “extraordinary” and was not a solution. 
“This wet winter definitely is great news for the Colorado River because of the snowpack. That snow runoff from the mountains will drain into the Colorado River and increase the stream flow,” Utah State University climate scientist Wei Zhang told PopSci in March. “But that cannot solve the water problem in the Colorado River—that demand is still much larger than the supply.”

The post Colorado River deals pays Arizona, California, and Nevada $1.2 billion to use less water appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Spy tech and rigged eggs help scientists study the secret lives of animals https://www.popsci.com/technology/oregon-zoo-sensor-condor-egg/ Mon, 22 May 2023 11:00:00 +0000 https://www.popsci.com/?p=542389
eggs in a nest
The Oregon Zoo isn't putting all its eggs in a basket when it comes to condor conservation. The Dark Queen / Unsplash

The field of natural sciences has been embracing sensors, cameras, and recorders packaged in crafty forms.

The post Spy tech and rigged eggs help scientists study the secret lives of animals appeared first on Popular Science.

]]>
eggs in a nest
The Oregon Zoo isn't putting all its eggs in a basket when it comes to condor conservation. The Dark Queen / Unsplash

Last week, The New York Times went backstage at the Oregon Zoo for an intimate look at the fake eggs the zoo was developing as a part of its endangered Condor nursery program. 

The idea is that caretakers can swap out the real eggs the birds lay for smart egg spies that look and feel the same. These specially designed, 3D-printed eggs have been equipped with sensors that can monitor the general environment of the nest and the natural behaviors of the California condor parents (like how long they sat on the egg for, and when they switched off between parents). 

In addition to recording data related to surrounding temperature and movement, there’s also a tiny audio recorder that can capture ambient sounds. So what’s the use of the whole charade? 

The Oregon Zoo’s aim is to use all the data gathered by the egg to better recreate natural conditions within their artificial incubators, whether that has to do with adjusting the temperatures they set these machines to, integrating periodic movements, or play back the sounds from the nest, which will ideally improve the outcomes from its breeding efforts. And it’s not the only group tinkering with tech like this.

A ‘spy hippo’

This setup at the Oregon Zoo may sound vaguely familiar to you, if you’ve been a fan of the PBS show “Spy in the Wild.” The central gag of the series is that engineers craft hyper-realistic robots masquerading as animals, eggs, boulders, and more to get up close and personal with a medley of wildlife from all reaches of the planet. 

[Related: Need to fight invasive fish? Just introduce a scary robot]

If peeking at the inner lives of zoo animals is a task in need of an innovative tech solution, imagine the challenges of studying animals in their natural habitats, in regions that are typically precarious or even treacherous for humans to visit. Add on cameras and other heavy equipment, and it becomes an even more demanding trip. Instead of having humans do the Jane Goodall method of community immersion with animals, these spies in disguise can provide invaluable insights into group or individual behavior and habits without being intrusive or overly invasive to their ordinary way of life.  

A penguin rover

Testing unconventional methods like these is key for researchers to understand as much as they can about endangered animals, since scientists have to gather important information in a relatively short time frame to help with their conservation. 

[Related: Open data is a blessing for science—but it comes with its own curses

To prove that these inventions are not all gimmick and have some practical utility, a 2014 study in Nature showed that a penguin-shaped rover can get more useful data on penguin colonies than human researchers, whose presence elevated stress levels in the animals. 

The point of all this animal espionage?

Minimizing the effects created by human scientists has always been a struggle in behavioral research for the natural sciences. Along with the advancement of other technologies like better cameras and more instantaneous data transfer, ingenious new sensor devices like the spy eggs are changing the field itself. The other benefit is that every once in a while, non-scientist humans can also be privy to the exclusive access provided into the secret lives of these critters, like through “Spy in the Wild,” and use these as portals for engaging with the world around them.

The post Spy tech and rigged eggs help scientists study the secret lives of animals appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
9 native grasses that will revitalize your sad, water-wasting lawn https://www.popsci.com/environment/types-of-grass-need-less-water/ Mon, 22 May 2023 10:00:00 +0000 https://www.popsci.com/?p=542000
Pink feathery muhly grass are one the many native types of grass you plant in the US.
Native types of grass, like this colorful muhly grass, can make your lawn more colorful, sustainable, and welcoming to wildlife. Zen Rial / Getty Images

Turn your yard into a living fireworks show while saving money, time, and nature.

The post 9 native grasses that will revitalize your sad, water-wasting lawn appeared first on Popular Science.

]]>
Pink feathery muhly grass are one the many native types of grass you plant in the US.
Native types of grass, like this colorful muhly grass, can make your lawn more colorful, sustainable, and welcoming to wildlife. Zen Rial / Getty Images

The most irrigated crop in the US isn’t a particularly tasty one. Nationwide, lawn grass takes up a total area bigger than the size of Georgia, and requires more than 300 gallons of watering per household a day. “These turf grasses have really short roots, so they require nearly a constant input of water,” says Becky Barak, a conservation scientist at the Chicago Botanic Garden and leader of the Rethinking Lawns Project.

The traditional American lawn, which often holds non-native species from Africa, Asia, and Europe, can be great for kids and dogs to run around on. But there are tons of native plantings that decrease water and pesticide use, reduce time and energy spent on mowing, absorb stormwater, and provide real habitat for wildlife. Not to mention, they make an incredible backdrop in the process. “Some native grasses can be mowed to look more like traditional turf grasses,” Barak says. “But then there are others that are beautiful and can add so much visual appeal and a totally different look.”

[Related: What to consider before ripping out your lawn]

When it comes to choosing types of grass, there are thousands of choices. “They can be all different colors of the rainbow,” Barak says. That might sound overwhelming, but don’t worry—you can narrow down the list by browsing local native nurseries and regional university guides. (Remember to check the soil type in your yard and find plants that match.) Once you have some options that work for your space, no matter how tiny, you’ll be well on your way to creating the native landscape of your dreams. Here are nine beloved varieties to get you started.

Prairie dropseed grass among other native plantings
Prairie dropseed germinates slowly in small patches. NPS

Short grasses

Buffalo grass (Bouteloua dactyloides)

  • Native range: Central US
  • Height: 3 to 10 inches
  • Light: full sun
  • Water use: low to medium

If you’re looking for a native grass that still keeps the lawn feel, look no further than buffalo grass. Named after the American bison that once grazed all over the Great Plains, this drought-tolerant turf grass is a popular choice for lawns for its sod-forming abilities. You can mow it infrequently or never if you prefer the slightly taller look. Although buffalo grass can survive without irrigation, it may lose some of its color in periods of drought and dormancy. Mix the seeds with other low-growing options for sustained greenery, or consider using a buffalo grass cultivar that’s bred for more consistent color.

Curly mesquite grass (Hilaria belangeri)

  • Native range: Southwestern US
  • Height: 4 to 12 inches
  • Light: full sun
  • Water use: low

Another popular turf grass for drought tolerance, this species is the perfect choice for desert and desert-like environments. It’s considered to be one of the best lawn options out of native grasses in the US, though its range is limited to Arizona, New Mexico, and Texas. Curly mesquite grass can grow in a variety of well-drained soils but works best in clay loam.

Pennsylvania sedge (Carex pensylvanica)

  • Native range: Eastern and Midwestern US
  • Height: 6 to 12 inches
  • Light: part to full shade
  • Water use: low to medium

Although Pennsylvania sedge isn’t technically a grass, its grass-like appearance makes it a great choice for homeowners looking to make their yard more native without losing the lush carpeted look. The plant offers good ground cover, spreads well, and deters deer from grazing. In the fall, this delicate, windswept-looking sedge turns from vibrant green to tan.

Blue grama closeup
The “eyelashes” on blue grama double as seed-bearing structures. NPS

Medium grasses

Purple lovegrass (Eragrostis spectabilis)

  • Native range: along the East Coast from Maine to Florida, west to Arizona
  • Height: 8 to 18 inches
  • Light: full sun
  • Water use: low

Purple lovegrass, one of Barak’s favorites, adds the perfect pop of color to your lawn. The heat-tolerant plant really starts to shine in August, when it forms an inflorescence of purple-red flowers that seemingly float on the grass like a cloud of color. Though it can be damaged by heavy foot traffic, the grass stays relatively short, only needs to be mowed a few times throughout the year, and is deer-resistant.

[Related: This lawn-mowing robot can save part of your yard for pollinators]

“Hatchita” blue grama (Bouteloua gracilis)

  • Native range: Western and Central US
  • Height: 8 to 20 inches
  • Light: full sun
  • Water use: low to medium

Along with buffalo grass and curly mesquite grass, this type of grass completes the trifecta of popular native turf choices in the US, but is even more drought tolerant than the other two members of the big three. It’s also both cold and heat tolerant, can grow in most soils except overly wet ones, and hosts different kinds of skipper butterflies during their breeding season. In the summer, the plant displays an inflorescence of purple flowers; in fall, it turns beautiful hues like orange and red. For fuller coverage, consider combining blue grama with buffalo grass and various native wildflowers in your yard.

Muhly grass (Muhlenbergia capillaris)

  • Native range: Southeastern US and the East Coast
  • Height: 2 to 3 feet
  • Light: full sun
  • Water use: low to medium

Planting muhly grass is like setting off living fireworks on your lawn. Each fall, it blooms with feathery pink inflorescences In winter, the grass fades into a rich tan. Beyond that, it retains a gorgeous dark-green color. The plant is easy to grow and germinate and is highly deer resistant.

Prairie dropseed (Sporobolus heterolepis)

  • Native range: Great Plains
  • Height: 2 to 3 feet
  • Light: full sun
  • Water use: low to medium

Another one of Barak’s favorites, prairie dropseed’s flowing green clumps make it the perfect accent or border grass—but that’s not the only fun part. When it begins to pop around June, the grass produces small pink and brown flowers that smell like coriander, licorice, or popcorn. It maintains its shape outside of the warmer seasons, even when blanketed by snow. This slow-growing type of grass is also a great choice if you’re looking to make your yard more pollinator-friendly, as they provide nesting materials for native bees.

Switchgrass closeup with icy droplets
Switchgrass can handle the toughest winters. Laura Hubers/USFWS

Tall grasses

Little bluestem (Schizachyrium scoparium)

  • Native range: everywhere in the US except the West Coast
  • Height: 2 to 7 feet
  • Light: full sun
  • Water use: low to medium

Despite its name, this drought-resistant grass is rather tall, making it a great choice to add dimension to a yard or garden. Little bluestem also boasts, you guessed it, a beautiful blue hue in summer before turning copper in the fall. Loved by homeowners (including Barak) and animals alike, this grass attracts birds and butterflies and provides nesting materials for native bees. On the flip side, you might catch a few deer visiting your new bluestem buffet.

[Related: How to build a butterfly watering area]

Switchgrass (Panicum virgatum)

  • Native range: everywhere in the continental US except California, Idaho, Oregon, and Washington
  • Height: 3 to 10 feet
  • Light: full sun to part shade
  • Water use: medium

If you want to make your home feel like the little house on the prairie, or if you’re just looking for some privacy, this one’s for you. Switchgrass, known for its natural presence in American tallgrass prairie, paints a bright green swath across the landscape. The tall plant produces airy pinkish masses of flowers in summer before transforming to bright yellow in fall. This grass is also highly deer resistant and is an essential host for several species of butterflies and their young.

Correction (May 23, 2023): Due to an editing error, the caption for the blue grama photo was originally mislabeled as little bluestem.

The post 9 native grasses that will revitalize your sad, water-wasting lawn appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This ancient farming practice could get a boost from the US farm bill https://www.popsci.com/environment/silvopasture-farm-bill-climate-change/ Sat, 20 May 2023 23:00:00 +0000 https://www.popsci.com/?p=541885
A silvopasture system can do more than simply save farmers money; it can help them diversify what they grow.
A silvopasture system can do more than simply save farmers money; it can help them diversify what they grow. USDA NRCS Texas via Flickr

By integrating trees and pasture, farmers can increase their bottom line and protect livestock from hotter summers.

The post This ancient farming practice could get a boost from the US farm bill appeared first on Popular Science.

]]>
A silvopasture system can do more than simply save farmers money; it can help them diversify what they grow.
A silvopasture system can do more than simply save farmers money; it can help them diversify what they grow. USDA NRCS Texas via Flickr

This article was originally featured on Nexus Media and Ambrook Research..

On a clear morning in April, after milking his seven cows, Tim Sauder looked over the pasture where he had just turned the animals out to graze. Like many dairy farms, Sauder’s fields swayed with a variety of greenery: chicory, alfalfa and clover. But they were also full of something typically missing on an agricultural landscape — trees. Thousands of them.

Between 2019 and 2021, Sauder planted 3,500 trees at Fiddle Creek Dairy, a 55-acre family farm in Lancaster County, Pennsylvania, where he and his wife raise cows to produce yogurt, cheese and beef. Today, young willow, hickory, poplar, pecan and persimmon trees stud the pastures, and on a crisp spring morning, rows of honey and black locusts, bur and cow oaks, were beginning to leaf out, casting shadows on the long grass below.

Sauder said planting trees has always been a priority; before he filled his pastures with them, the farm was home to a small fruit orchard as well as riparian buffers — trees planted along the creek to prevent erosion and safeguard water quality. But the trees that his cattle now graze beneath represent a fundamental shift in his operation.

The Sauders are betting the farm, as it were, on silvopasture, the ancient practice of raising animals and growing trees and pasture on the same piece of land (silva is forest in Latin). In a silvopasture setup, farmers carefully manage each element to benefit the other—relying on manure to fertilize trees, for example, or fallen fruit to feed the livestock—resulting in a system that’s greater than the sum of its parts. 

It’s an old idea that’s gaining modern traction. Last year, the USDA awarded the Nature Conservancy and multiple partner organizations a $64 million grant to advance agroforestry — the umbrella term for agricultural practices that incorporate trees — by providing technical and financial assistance to farmers looking to make the switch. This year’s Farm Bill could mean another infusion of funding as well as the expansion of existing agroforestry programs to more explicitly include silvopasture. 

“The USDA is doing a lot, but a lot more could be done,” said Jabob Grace, communications project manager with the Savanna Institute, a nonprofit that promotes agroforestry practices. His organization is advocating that the 2023 Farm Bill increase appropriations for the National Agroforestry Center, the only government agency dedicated to the practice, from $5 million to $25 million (Grace said the Center has been chronically underfunded, never receiving more than $2 million annually). They’re also pushing for the establishment of regional agroforestry centers, the development of a USDA technical assistance program in agroforestry, and more grant money dedicated to helping farmers like Sauder establish a silvopasture system. 

In Sauder’s pastures, “each tree has multiple benefits,” he explained. Mulberry leaves have more protein than alfalfa, and the seed pods that fall off the honey locust every autumn are packed with sugar; those trees were chosen to supplement the animals’ diet. Sauder chose other tree species with leafy canopies to protect his herd’s health. “Come August, there will be shade here when the cows need it.”

Providing shade may seem like a matter of comfort, but it can actually be one of life and death. Last summer, thousands of cattle died in Kansas, after the area was racked by historic heat and humidity. As the climate heats up, researchers think mortality events like the one in Kansas will become more common. But even when cattle survive brutally hot summers, the impact of heat stress can wreak havoc on a farm’s bottom line.

Grace said the farmers he works with are worried about what hotter temperatures mean for their livelihoods. 

“When we talk to our producers about silvopasture, the first thing they’re interested in is shade,” Grace said. “They’re noticing the hotter temperatures. Their cattle are uncomfortable, they’re not putting on weight. Cash is almost directly flowing out of that farmer’s pocket when they have overheated cattle.”

A lot of cash, in fact. A 2022 study from Cornell University predicted that losses of cattle herds due to heat stress will total $15 to $40 billion a year by the end of the century. To avoid these losses, the authors note that “tree–livestock systems can be highly effective in reducing heat stress.” And Farm Bill funding could help more farmers get started.

Shade is one way silvopasture cuts down on costs, but there are others. Some poultry farmers use the method to shield their flocks from birds of prey. Vineyards and Christmas tree farms are increasingly turning to grazing animals to mow and control weeds.

But a silvopasture system can do more than simply save farmers money; it can help them diversify what they grow. Perhaps one of the oldest — and most profitable — examples of silvopasture is the dehesa system of southern Spain, where Ibérico pigs wander among towering oak trees, feasting on acorns and fertilizing the soil, resulting in some of the world’s most expensive ham and a cash crop of cork.

While livestock health and revenue are compelling reasons for farmers to practice silvopasture, perhaps the method’s most convincing advantage is its potential as a climate solution. 

Project Drawdown, a nonprofit that analyzes climate solutions, ranks silvopasture as the 11th most effective strategy for combating climate change — well ahead of solar panels, recycling and electric cars — finding that pastures with trees sequester five to 10 times as much carbon as similarly sized but treeless pastures.

The perennial roots of a silvopasture system can also help stabilize the soil, preventing erosion as well as the flooding that’s becoming more common with heavier rains. Additionally, a well-managed silvopasture operation can reduce wildfire loads — thanks to carefully spaced and pruned trees as well as grazing animals that control the shrubby understory — and increase biodiversity.

What’s more, when livestock get to eat the forage that’s right in front of them, the gas-guzzling farming equipment and trucks typically used to get food to feedlots can stay in park. “Cutting back on harvesting and transporting means a significant reduction in greenhouse gasses,” Grace explained.

According to Grace, large swaths of the American Midwest used to be covered by a natural silvopasture of sorts, an oak savanna ecosystem where grazing animals like bison dined on prairie beneath fruit and nut trees. Many Indigenous cultures embraced and benefited from this form of land management, until European settlers got to work deforesting the region, eventually building farms that worked more like factories. 

This emphasis on efficiency led to widespread monoculture and annual cropping systems where, Grace said, “for a good chunk of the year, not much is happening.” 

Today, only about 1.5% of farmers in the U.S. (approximately 31,000) practice any form of agroforestry, including silvopasture, a 2017 USDA survey revealed. But as summers get hotter and climate predictions more dire, interest in the practice is booming. Matthew Smith, research program lead at the USDA’s National Agroforestry Center, said “the demand for silvopasture knowledge and information is higher than anyone can provide.” 

That’s because silvopasture is more complicated than turning livestock loose in the woods; it requires choosing the right trees and forage for the local climate and constantly moving livestock from one place to another. 

“If folks are interested in silvopasture, they really should have expertise in rotational grazing beforehand…which is hard to learn,” Smith said. “Things can go wrong quickly when all your crops are in the same place.” Livestock left in one spot too long can damage trees, for example, and plants grown too close together can outcompete each other for light and nutrients. 

There are other challenges. For one thing, silvopasture systems require a large area of land and more hours of labor — at least at first — to maintain. Additionally, it takes trees many years to grow and begin to provide meaningful benefits. But, by far, the greatest obstacle for most farmers who want to practice silvopasture is the high price of purchasing, planting and maintaining trees. 

The vast majority of silvopasture operations rely on grants and cost-sharing programs from organizations like the Natural Resources Conservation Service and the USDA, programs  that advocates like Grace say badly need the boost in funding and staff that this year’s Farm Bill could provide. Grace said that the handful of existing agroforestry programs, such as the Conservation Reserve Program and the Environmental Quality Incentives Program, are vague in their wording and need to be tweaked to more explicitly fund silvopasture projects and provide additional cost-sharing opportunities to farmers. 

Savanna Institute ally and climate NGO Carbon 180 is recommending that the 2023 Farm Bill increase federal cost share to 75% for agroforestry practices to help defray upfront costs and ensure farmers can access high-quality, regionally appropriate trees and shrubs. 

In the meantime, funding remains a “major barrier to farmers hoping to pursue silvopasture,” said Austin Unruh, owner of Trees for Graziers, who helped Tim Sauder secure money from the Pennsylvania office of the NRCS. Unruh, whose business has helped about 25 farms implement silvopasture in the last three years, said helping farmers pay for them “has been frustrating. It’s a different source of funding each time, different hoops to jump through.”

For Sauder, the financial assistance from the state was paramount. He said that without it, the trees in his pasture simply wouldn’t be there, “at least not for the next 20 years or so.” 

He admits that the new system has been a lot of work upfront, but that he expects it to pay off in the form of healthier pasture, soil and cows — and hopefully his land’s ability to support more of them. 

And yet, it’s working in tandem with nature that inspires Sauder the most. Running his farm with the health of the ecosystem top of mind, he said, is like making up for the mistakes of his ancestors, Mennonite immigrants who displaced Indigenous people and bent the land to their will. 

“I’m reimagining what would have happened if they had arrived here and said instead, ‘What’s the best way to live in this place?’”


This article is copublished with Ambrook Research as part of a series that looks at ways the 2023 Farm Bill can help address the climate crisis. Nexus Media News is an editorially independent, nonprofit news service covering climate change. Follow us @NexusMediaNews.

 

The post This ancient farming practice could get a boost from the US farm bill appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
El Niño is probably back—here’s what that means https://www.popsci.com/environment/el-nino-2023/ Fri, 19 May 2023 15:49:28 +0000 https://www.popsci.com/?p=542208
El Nino 2023 signs on NASA weather satellite data on higher Pacific Ocean temperatures and water levels, marked by red around the equator
Sea level data from the Sentinel-6 Michael Freilich satellite on April 24 shows relatively higher (shown in red and white) and warmer ocean water at the equator and the west coast of South America. Water expands as it warms, so sea levels tend to be higher in places with warmer water. These can be strong hints of an upcoming El Niño cycle. NASA/JPL-Caltech

Are you prepared for a wet, hot El Niño summer?

The post El Niño is probably back—here’s what that means appeared first on Popular Science.

]]>
El Nino 2023 signs on NASA weather satellite data on higher Pacific Ocean temperatures and water levels, marked by red around the equator
Sea level data from the Sentinel-6 Michael Freilich satellite on April 24 shows relatively higher (shown in red and white) and warmer ocean water at the equator and the west coast of South America. Water expands as it warms, so sea levels tend to be higher in places with warmer water. These can be strong hints of an upcoming El Niño cycle. NASA/JPL-Caltech

This year is going to be pretty unforgettable, and not in a good way. Climate scientists have predicted the arrival of El Niño, a climate pattern that temporarily warms up waters in the eastern Pacific Ocean and will change precipitation and temperature patterns around the world.. The last El Niño event took place from 2018 to 2019.

Each El Niño is unique in terms of how intense the warming effect gets, says Daniel Swain, a climate scientist at UCLA. This makes it harder for individual areas along the Pacific, like California and countries in Southeast Asia, to know how to properly prepare for upcoming storms or flooding. 

Past El Niño events can help areas get a broad sense of how strong the next one will be, but as time goes on, Swain says it is likely we will see an increase in extreme El Niño events because of climate change. This upcoming one is expected to make 2023 the hottest year in human history.

What is the forecast for El Niño 2023?

Climate scientists use a variety of tools to predict when and how hard El Niño will hit. Some examples include satellites to track wind and tropical rainfall patterns, ocean buoys to monitor sea surface temperatures, and mini radios strapped to weather balloons that measure air temperature, humidity, and pressure. 

David DeWitt, director of the Climate Prediction Center at the National Oceanic and Atmospheric Administration, forecasts an 82 percent chance of El Niño arriving between May and July. A weak El Niño is not out of the question, but the likelihood of a strong El Niño is about 55 percent. There’s also a 90 percent chance of El Niño persisting in the first few months of 2024.

How does El Niño warm the ocean?

During El Niño, weak winds coming from the east cause heat to build up along the equator in the eastern Pacific Ocean. As the waters warm up, they transfer heat to the atmosphere and create moisture-rich air that fuels rainstorms and floods.

One sign of an upcoming El Niño event to look out for is Kelvin waves in the Pacific. These aren’t your normal beach waves: They resemble the slow sloshing ones in your bathtub. The long movements pull expanding warm water to the ocean’s surface, which in turn, raises sea levels. They also strengthen El Niño by further reducing how much cold water is on the ocean’s surface. 

[Related: The jet stream is moving north. Here’s what that means for you.]

Recently, satellites orbiting Earth detected two- to four-inch-high Kelvin waves moving west to east along the equator. They also measured higher than average sea levels—another strong clue for El Niño. “If it’s a big one, the globe will see record warming,” NASA scientist Josh Willis said in a statement.

How will El Niño affect global weather patterns?

Brad Rippey, a meteorologist for the US Department of Agriculture, says El Niño is expected to cause flooding in some regions and droughts in others. During the Northern Hemisphere summer (June to August), El Niño will likely suppress Atlantic hurricanes and bring drought in regions such as Central America, the Caribbean Basin, and southern and southeastern Asia. During the Southern Hemisphere summer (December to February), areas like southern Africa, Australia, and the western Pacific Basin will experience more heat, droughts, and fires. 

Some regions of the world, however, will face wetter conditions. Rippey says that parts of South America, such as Argentina, have been reeling from drought because of the long-running La Niña that began in 2020. With El Niño, these areas would finally get doused with precipitation.

Is climate change making El Niño worse?

El Niño and its cooler counterpart La Niña are part of a natural cycle between warming and cooling of the Pacific Ocean that was first detected by South American fisherman in the 17th century. That said, climate change is interacting with this cycle and shaping a future with stronger El Niño episodes. “The Earth’s natural climate cycle and climate caused by humans are not independent of each other,” Swain explains. He adds that before global warming, the world’s temperature would reset after El Niño, but now it remains elevated.

The combination of human-caused global warming and short-term warming from El Niño could mean that the second half of 2023 or early 2024 will break global temperature records, Swain says.

Is the world prepared for the switch from La Niña to El Niño?

Yes and no. While most communities have experienced the upturns and downturns of El Niño before, each cycle is different. This upcoming one is no exception.

The level of preparation depends on the country and whether El Niño will trigger more heatwaves or flooding. Another factor is a country’s economy and whether they can afford to invest in protective measures.

[Related: This summer could push US energy grids to their limits]

“It’s usually the places that are most vulnerable that often have the least ability to shift things around to prepare,” says Swain. The 2015-2016 El Niño event, for example, caused heat stress, malnutrition, and disease outbreaks for more than 60 million people living in developing countries. But that doesn’t mean richer countries come out unscathed. For instance, El Niño events in the past 15 years cost the US economy $25 billion. A study published on May 18 in the journal Science estimates the average El Niño cost the global economy $3.4 trillion.

Being a few months away, Swain says it’s unlikely that a resource-poor region can change things around in a short time. “Now the question becomes, how much resilience do these places have to these kinds of natural hazards?”

The post El Niño is probably back—here’s what that means appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Thriving baby California condor is a ray of hope for the unique species https://www.popsci.com/environment/california-condor-chick-hatched/ Fri, 19 May 2023 13:00:00 +0000 https://www.popsci.com/?p=542142
A newly hatched California condor.
A California condor hatchling at Liberty Wildlife in Arizona. Condors are among the largest birds in North America, are a crucial part of the ecosystem, and are sacred to many indigenous peoples. Barb Del've/Liberty Wildlife

The happy, healthy hatchling is great news for an already vulnerable population facing a deadly bird flu pandemic.

The post Thriving baby California condor is a ray of hope for the unique species appeared first on Popular Science.

]]>
A newly hatched California condor.
A California condor hatchling at Liberty Wildlife in Arizona. Condors are among the largest birds in North America, are a crucial part of the ecosystem, and are sacred to many indigenous peoples. Barb Del've/Liberty Wildlife

On May 9, a baby California condor hatched at Liberty Wildlife, a wildlife rehabilitation, education, and conservation organization in Phoenix, Arizona. The hatching is a ray of hope and welcome good news for the struggling species that was only recently brought back from the brink of extinction

Only 22 condors were believed to be alive during the 1980s after a maelstrom of habitat loss, poaching, lead poisoning accidents with power lines, and the insecticide DDT. Currently, about 275 wild birds are cruising the skies about California, Utah, Arizona, and Baja California, Mexico, more than 160 are in captivity, and more than 400 live worldwide

[Related: Inside the Yurok Tribe’s mission to make critically endangered condors thrive.]

The largest bird species in North America and a crucial part of the ecosystem, California condors are considered sacred to many indigenous peoples. The Yurok Tribe of the Pacific Northwest call California condors “prey-go-neesh,” and say the birds have been tied to the Yurok Hlkelonah, or the cultural and ecological landscape, since the beginning of time. The tribe has officially been a driving force on condor reintroduction since 2008

Now, these sacred and important birds face a grave threat in the form of a tiny pathogen. Highly pathogenic avian influenza (H5N1), also called bird flu, is threatening condors at an alarming rate. It was first detected in the California condor in late March, and more than 20 are known to have died since. 

“It is scary particularly for endangered species like the California condors. It has the ability to wipe out an entire species,” Liberty Wildlife’s Animal Care Coordinator Jan Miller tells PopSci

One of the birds that succumbed to the disease was the new hatchling’s mother, part of a breeding pair of wild California condors. The mother was found acting suspicious in a cave near the Grand Canyon and was brought to Liberty Wildlife due to suspected bird flu. She died eight days later.  

“Using telemetry, it was assumed that she had laid an egg, probably between March 13 and March 17, and it was predicted to hatch between May 9 and May 17,” Liberty Wildlife’s Executive Director Megan Mosby tells PopSci. “The limited movement of the male led to the assumption that he was trying to incubate an egg.  The biologists at the Arizona Vermilion Cliff site decided that it wasn’t safe for the male, a known breeder, to attempt to raise a chick solo and feed himself, especially in a dank, cool cave … a perfect place for flu contamination.”

[Related: Spy tech and rigged eggs help scientists study the secret lives of animals.]

Biologists brought the egg back to Liberty Wildlife, where it was monitored in a structure called a brooder.  When the egg began to “pip,” the Los Angeles Zoo’s propagation team advised Liberty Wildlife on best practices for monitoring the hatchling’s progress. The team noticed that the chick was in the wrong position in the egg due to where it had pipped, or poked through its membrane, and that it would need assistance in order for the hatch to be successful. 

“Veterinarian Dr. Stephanie Lamb assisted in the freeing of the baby from the egg and the operation was successful.  After a health check, a swab to test for Avian Flu was obtained, and the chick was placed in an incubator with a surrogate (stuffed animal) ‘mother’ condor,” Miller says. 

The hatching of a baby California condor at Liberty Wildlife in Arizona. Dr. Stephanie Lamb and the wildlife hospital team at Liberty Wildlife assisted in the incubation, hatching, and care of the egg for the past month. The baby condor is doing well and being cared for with the best practice, by our team wearing camouflage, and with a big assist from a stuffed puppet “parent.” CREDIT: Liberty Wildlife.

The hatchling was negative for bird flu and continued to eat solid food and bond with her surrogate plush parent. According to Mosby, the team was excited to find out she was female because 11 of the 21 condors that have died due to bird flu were breeding age females.

On May 17, she was flown to The Peregrine Fund in Boise, Idaho. There she will be raised by foster parents so that she can one day be released back into Arizona’s skies.  

“At this age it is very easy for the chick to imprint on humans so getting her with her own species is critical to her releasability,” says Miller. “The Peregrine Fund has a very advanced propagation department with proven foster parents to help raise chicks for release into the wild. It is a very large operation with proven results.”

The hatching laying on blankets with her surrogate stuffed animal parent.
The hatching with her surrogate stuffed animal parent. CREDIT: Chris Sar/Liberty Wildlife.

According to the team, vultures like the California condor are not only intelligent, but are incredibly necessary to help clean up the environment since they handle dead and decaying animals that can spread disease. 

“Vultures are part of the natural cleanup crew in nature. They deserve every fair chance they can get to continue to survive and be a part of this world,” says Miller. 

In addition to this welcome hatchling’s continued success this week, the United States Department of Agriculture’s Animal and Plant Health Inspection Service approved the emergency use of bird flu vaccine on May 16. The Yurok Tribe called this move, “a huge step in the effort to combat this virulent threat, but still a long road ahead.”

The post Thriving baby California condor is a ray of hope for the unique species appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Staggering 3D scan of the Titanic shows the wreck down to the millimeter https://www.popsci.com/technology/3d-titanic-full-scans/ Wed, 17 May 2023 19:00:00 +0000 https://www.popsci.com/?p=541700
Magellan Ltd 3D scan of Titanic wreckage
Two submersibles photographed the Titanic down to the millimeter. Atlantic/Magellan

More than 16 terabytes of data recorded by remote submersibles has resulted in amazingly complete images of the Titanic's remains.

The post Staggering 3D scan of the Titanic shows the wreck down to the millimeter appeared first on Popular Science.

]]>
Magellan Ltd 3D scan of Titanic wreckage
Two submersibles photographed the Titanic down to the millimeter. Atlantic/Magellan

Months of painstaking work analyzing over 16 terabytes of imaging and 4K video data has resulted in the first full-sized 3D scan of the RMS Titanic’s stunning, sunken remains.

Per the BBC, specialists working for the deep-sea mapping company Magellan Ltd. began remotely piloting two deep sea submersibles during the summer of 2022. The pair of subs, Romeo and Juliet, collected over 700,000 images over the 3-mile wreckage site during their more than 200 hours of diving time. The results are renderings in such detail that they showcase one of the cruise liner propeller’s serial numbers alongside passengers’ shoes and bottles of unopened champagne.

[Related: How scientists keep ancient shipwrecks from crumbling into dust.]

Over 1,500 people died after the cruise liner struck an iceberg and sank into the frigid Atlantic Ocean waters during its 1912 maiden voyage from Southampton, UK, to New York. Numerous expeditions have surveyed the Titanic’s remains since its rediscovery in 1985, but until now the ocean’s pitch-black environment at 3,800m (12,500ft) coupled with the ship’s sheer size have only allowed murky glimpses and snapshots of wreckage.

Now, however, experts can begin studying the Titanic’s remnants with an entirely new level of detail and precision. In a statement, Parks Stephenson, a longtime Titanic researcher, explained, “What we are seeing for the first time is an accurate and true depiction of the entire wreck and debris site. I’m seeing details that none of us have ever seen before and this allows me to build upon everything that we have learned to date and see the wreck in a new light.”

3D scan of Titanic hull wreckage
CREDIT: Atlantic/Magellan
3D scan of Titanic ship wreckage
CREDIT: Atlantic/Magellan
3D scan of Titanic propeller wreckage
CREDIT: Atlantic/Magellan

According to Stephenson, despite knowing the disaster’s cause, we still aren’t sure what really happened when the ship hit the iceberg. “We don’t even know if she hit it along the starboard side, as is shown in all the movies—she might have grounded on the iceberg,” Stephenson told the BBC. Additionally, examining portions such as the ship’s stern could uncover the physics behind how the ship actually landed upon the sea floor.

[Related: Watch never-before-seen footage of the Titanic shipwreck from the 1980s.]

Time is of the essence for future visits to the Titanic’s remains, as microbial life continues to eat away at portions of the ship while other pieces disintegrate within the deep ocean’s hostile environment. But even so, the newest imagery will be an invaluable historical asset for researchers as they continue to learn from one of the 20th century’s most famous tragedies.

The 2022 expedition was detailed by a film crew working alongside Magellan Ltd. for Atlantic Productions, with plans to release a documentary on the project in the near future. 

The post Staggering 3D scan of the Titanic shows the wreck down to the millimeter appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How migration makes life more resilient https://www.popsci.com/environment/the-jewel-box-tim-blackburn/ Tue, 16 May 2023 20:30:00 +0000 https://www.popsci.com/?p=541396
Silver Y moth feeding on long fuschia flowers
The silver Y moth migrates between southern and northern Europe every spring. David Tipling/Universal Images Group via Getty Images

Should we move species to aid their survival? A biologist explains the dilemma through the plight of moth flights.

The post How migration makes life more resilient appeared first on Popular Science.

]]>
Silver Y moth feeding on long fuschia flowers
The silver Y moth migrates between southern and northern Europe every spring. David Tipling/Universal Images Group via Getty Images

Excerpted from The Jewel Box: How Moths Illuminate Nature’s Hidden Rules by Tim Blackburn. Copyright © 2023. Published by Island Press.

The composition and structure of ecological communities doesn’t only depend on what happens in their immediate vicinity. Events in the wider environment are important, too. All of nature is connected. This is why migration matters.

Indeed, migrants have never mattered so much. Humanity has destroyed a substantial proportion of natural habitat worldwide, and much of what is left is now heavily fragmented—small islands in a sea of inhospitable cropland, pasture, or concrete. The populations they house will be small, too, and susceptible to the vagaries of bad
luck. Luckily, as we’ve seen, fragmented populations can still persist if they are connected by migrants. Migrants can bolster birth rates and counteract death rates, preventing population extinction and recolonizing sites when local extinction does take populations out. Humanity’s fragmentation of nature has only increased the relevance of these dynamics.

Migration can ameliorate some of the damage caused by fragmentation, but only some. Metapopulations are most secure when there is a large “mainland” population acting as a plentiful source of immigrants. Unfortunately, habitat destruction tends to reduce the extent and productivity of such mainlands, to the detriment of surrounding patches dependent on their largesse. Remaining fragments are often viewed as unimportant from a biodiversity perspective, but destroying them can increase the distance between surviving patches, and so lower the likelihood of colonization. When colonization rates are lower than extinction rates, populations will eventually disappear. More isolated habitat fragments have fewer species, moths and others.

On top of that, not all species are well adapted for a peripatetic lifestyle. Female vaporer moths, for example, lack wings, essentially being furry sacks for laying eggs. They are ill equipped for moving between habitat fragments. Likewise, winter moth, mottled umber, and early moth—all widespread species I’ve trapped in Devon but not in London, where the patchy nature of suitable habitat does them no favors. Even apparently mobile species often will not move far, like the cinnabar moth. Many skulking bird species of the Amazon rainforest understory evidently will not cross open spaces to the extent that major rivers in this basin become boundaries to their geographic distributions.

Specialists on certain habitats or food plants will fare especially badly when fragmentation increases. Species like the scarce pug, which in Britain feeds only on sea wormwood on a few east coast salt marshes. Extensive coastal development means that salt marshes are rarer and more-fragmented habitats than of old, and these are the only habitat of sea wormwood in Britain. Greater distances between suitable patches reduces the chances that dispersing individuals will find them, to colonize or rescue.

The Jewel Box book cover with a brown and pink sphinx moth, white text, and black background
Courtesy of Island Press

Migrants can also allow species to respond to changes in conditions— to take advantage of new opportunities as they develop, or escape from sinking ships. This is especially important in the face of the ongoing climate crisis. When environmental conditions change beyond the physiological tolerances of individuals, the species has only three options: adapt, move, or go extinct. The current speed of environmental change makes adaptation difficult, especially for those with slower life histories, leaving movement as the best option for survival.

Unfortunately, the ability of species to track changes in the climate is significantly hampered by habitat destruction and fragmentation. It’s easy for populations to move through continuous tracts of habitat. But remember the effects of area and isolation on the species richness of islands: small, remote pockets of habitat are harder targets for dispersing individuals to hit. Humanity has increased the need for species to move while simultaneously making it harder for them to do so.

We can help, though—right? If species need to move, we can step in and do the leg work. It’s called assisted colonization—the translocation of individuals beyond the current limits of their distribution in order to conserve species that would otherwise go extinct thanks to their inability to reach new areas in the face of a changing environment. Humans have been moving species around for all sorts of reasons for millennia now. Why not for conservation?

Well, precisely because of those species we’ve moved—the impacts of pesky aliens like the box-tree moth. In truth, that species is second division when it comes to damage. Other aliens have been much worse. I’ve already mentioned cats and rats, but take the rosy wolfsnail. It was moved to several islands across the Pacific to control populations of another alien, the giant African land snail, but instead ate its way through the entire world populations of more than 130 other snail species. Alien diseases can wipe out naïve host populations, like the fungal pathogens Batrachochytrium dendrobatidis and B. salamadrovirans that, between them, have been responsible for the extinction of almost 100 amphibian species worldwide, and population declines in hundreds more. Alien plants can modify ecosystems to their own advantage, and suppress native plant species. Native birds tend to do worse in habitats dominated by alien plants, because their insect prey often cannot make a living on those plants. Aliens in general have been associated with the global extinction of more species in the last 500 years than any other human intervention, including habitat destruction. They remain one of the main drivers of global population declines.

It’s trebly ironic that not only has humanity caused problems for species by increasing the need for them to move while simultaneously making it harder for them to do so, but also has caused problems for some species by moving others. The pressure for assisted colonization is growing, but we are rightly wary of taking species to places where they have no prior history.

Buy The Jewel Box by Tim Blackburn here.

The post How migration makes life more resilient appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Light pollution is messing with coral reproduction https://www.popsci.com/environment/coral-reef-spawn-light-pollution/ Mon, 15 May 2023 13:00:00 +0000 https://www.popsci.com/?p=541131
A coral reef in the Gulf of Eilat/Aqaba in the Red Sea. Corals here and in the Persian Gulf are particularly affected by light pollution.
A coral reef in the Gulf of Eilat/Aqaba in the Red Sea. Corals here and in the Persian Gulf are particularly affected by light pollution. Sahchaf Ben Ezra

More than 7 million square miles of coastal ocean are possibly affected by increasingly common nighttime lights.

The post Light pollution is messing with coral reproduction appeared first on Popular Science.

]]>
A coral reef in the Gulf of Eilat/Aqaba in the Red Sea. Corals here and in the Persian Gulf are particularly affected by light pollution.
A coral reef in the Gulf of Eilat/Aqaba in the Red Sea. Corals here and in the Persian Gulf are particularly affected by light pollution. Sahchaf Ben Ezra

A dark side effect of the electricity that helps society run around the clock is the pollution caused by our increasing numbers of lights at night. Light pollution can obscure stargazing, confusing sea turtles when they hatch, and also could be harming coral reefs.   

[Related: The switch to LEDs in Europe is visible from space.]

The light pollution from cities along the coast can trick the reefs into spawning outside of their optimal reproductive times, according to a study published May 15 in the journal Nature Communications.

“Corals are critical for the health of the global ocean, but are being increasingly damaged by human activity. This study shows it is not just changes in the ocean that are impacting them, but the continued development of coastal cities as we try and accommodate the growing global population,” Thomas Davies, a study co-author and conservation ecologist at the University of Plymouth in the United Kingdom,  said in a statement. 

The moon’s cycles trigger coral to spawn. During these spawning events, hundreds of eggs are released on certain nights of the year. These nights are critical to maintain and recover coral reefs after mass bleaching or other adverse events.

By using a combination of spawning observations and data on light pollution, an international team of researchers showed that the corals exposed to artificial light at night (ALAN) are spawning about one to three days closer to the full moon compared to reefs that are not.

If coral spawn on different nights, coral eggs are less likely to be fertilized and survive to produce adult corals. Population growth is needed now more than ever to help the population recover after disturbing events like bleaching.

The study builds on research from 2021 that mapped out the areas of the ocean that are most affected by light pollution. It found that at 3.2 feet deep, over 7 million square miles of coastal ocean are exposed to biologically important ALAN.  

“This study further emphasizes the importance of artificial light pollution as a stressor of coastal and marine ecosystems, with the impacts on various aspects of biodiversity only now being discovered and quantified,” Tim Smyth, a co-author and biogeochemist at Plymouth Marine Laboratory, said in a statement

The team paired their new data with a global dataset representing 2,135 coral spawning observations taken over the last 23 years. They saw that ALAN is possibly advancing the triggers for spawning by creating a fake illuminance between sunset and sunrise on the nights after the full moon. 

[Related: The best ways to reduce light pollution and improve your quality of life.]

The study looked at coastal regions around the world, but the coral reefs of the Red Sea and Persian Gulf in the Middle East are particularly affected by light pollution. These coastlines have been heavily developed in recent years, putting the reefs near the shore at risk. 

“Despite the challenges posed by ALAN, corals in the Gulf of Eilat/Aqaba are known for their thermal tolerance and ability to withstand high temperatures. However, a disturbance in the timing of coral spawning with the moon phases can result in a decline in new coral recruits and a reduction in the coral population,” Oren Levy, co-author and marine ecologist at Bar-Ilan University in Israel, said in a statement

Some individual methods to reduce light pollution, especially for those along the coast, include removing nighttime lighting that is not necessarily needed for public safety, removing all unnecessary light even if it is just one in a backyard, and switching away from white lights to more muted red lights that are less intense.

“By implementing measures to limit light pollution, we can protect these vital habitats and safeguard the future of the world’s oceans. It’s our responsibility to ensure that we preserve the biodiversity of our planet and maintain a healthy and sustainable environment for generations to come,” said Levy.

The post Light pollution is messing with coral reproduction appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Stressed clams turn ghostly white in warming waters https://www.popsci.com/environment/bleaching-climate-ocean-clams-coral-reef/ Fri, 12 May 2023 22:00:00 +0000 https://www.popsci.com/?p=540926
In response to stress, giant clams can lose the symbiotic zooxanthellae that live in their fleshy
mantles.
In response to stress, giant clams can lose the symbiotic zooxanthellae that live in their fleshy mantles. Photo by Rasmus Loeth Petersen/Alamy Stock Photo

Giant clams suffer from bleaching like coral reefs, though the consequences don’t seem quite as dire.

The post Stressed clams turn ghostly white in warming waters appeared first on Popular Science.

]]>
In response to stress, giant clams can lose the symbiotic zooxanthellae that live in their fleshy
mantles.
In response to stress, giant clams can lose the symbiotic zooxanthellae that live in their fleshy mantles. Photo by Rasmus Loeth Petersen/Alamy Stock Photo

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

Bleaching occurs when a stressed marine creature, most commonly a coral, expels its symbiotic algae and turns a ghostly white, often in response to a warming sea. But bleaching affects more than just corals. Giant clams—massive mollusks that can grow more than 1.2 meters in diameter and weigh as much as 225 kilograms—can bleach, too. And in recent research, scientists have learned more about how bleaching disrupts these sessile giants, affecting everything from their nutrition to their reproduction.

Giant clams live on coral reefs and are the largest bivalves on Earth. Like corals, giant clams bleach when they’re stressed, often as a response to excessively warm water. As with a coral, a bleached giant clam expels the algae, called zooxanthellae, that live inside it. These algae dwell in the soft tissue of the clam’s mantle and provide energy for the animal through photosynthesis, leaving a bleached clam with less energy and nutrients. At worst, bleaching can kill giant clams through food deficiency.

Scientists have been studying bleaching in giant clams for decades. In 1997 and 1998, during a brief period that saw extensive coral bleaching worldwide with corals succumbing in at least 32 disparate countries, bleached giant clams were observed from Australia’s Great Barrier Reef to French Polynesia after water temperatures in the South Pacific rose significantly. In 2010, similar temperatures in the water off Thailand’s Ko Man Nai Island also led to scores of deaths.

Of the 12 species of giant clams, some are more resistant to heat stress than others. But as scientists are finding, even when a giant clam survives bleaching, other physiological functions can still be severely impaired.

A recent study in the Philippines of wild clams, for example, found that bleaching can hamper their reproduction. Bleaching reduces the number of eggs giant clams produce, and the more severe the bleaching, the fewer eggs they make. Reproducing “takes a lot of energy. So instead of using that energy for reproduction, they just use it for their survival,” says Sherry Lyn Sayco, the lead author of the study and a graduate student at the University of the Ryukyus in Japan.

Mei Lin Neo, a marine ecologist and giant clam expert at the National University of Singapore who was not involved in the study, says the work contributes to the story of how climate change can have “repercussions on the longevity of species.”

In general, she says, we know much more about how climate change affects corals than marine species with similar physiologies. “By understanding how other symbiotic species respond to climate change, each species becomes a unique indicator on how the overall reef ecosystem is doing.”

Bleached giant clams, it turns out, are often better than corals at coping with bleaching. Near Ko Man Nai Island, 40 percent of the bleached clams re-colored after a few months as the zooxanthellae repopulated in their tissues when temperatures cooled again. After the 1997–1998 bleaching event, over 95 percent of the 6,300 bleached clams near Australia’s Orpheus Island recovered.

Giant clams seem amenable to restocking, too. In the Philippines, where the largest species, Tridacna gigas, went locally extinct in the 1980s, restocking has brought it back.

“Clams are not just any organism,” Sayco says. “It’s not that we are just conserving them for them to be there,” she adds, “they have lots of benefits and ecosystem services, such as [boosting] fisheries [and] tourism.”

The post Stressed clams turn ghostly white in warming waters appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Elephants have complex communities and distinct traditions https://www.popsci.com/environment/india-elephants-nuanced-understanding/ Tue, 09 May 2023 01:00:00 +0000 https://www.popsci.com/?p=539646
An elephant herd at a national park in India.
An elephant herd at a national park in India. DepositPhotos

Developing a nuanced perception of elephant life could prevent conflict with them in India.

The post Elephants have complex communities and distinct traditions appeared first on Popular Science.

]]>
An elephant herd at a national park in India.
An elephant herd at a national park in India. DepositPhotos

This article was originally published on Undark.

In 2018, news spread around Saroj Duru’s village that four elephants had gathered at a nearby lake. Such creatures didn’t typically visit her region in central India — they were known to stay further north in more forested habitats — and so, out of curiosity, Duru and her neighbors walked down to see them.

The elephants rested in the water as people jostled at the shore, trying to get a closer look. Others climbed trees for a better view. After an hour of savoring the thrill of seeing such large animals, Duru headed back home. She was not sure when she would see them again.

Instead, that same day, a herd rampaged through the village’s farms. “They tore our boundary wall and tore up our banana tree,” Duru said. “They uprooted the gate.”

She was terrified, and, like many of her neighbors, climbed up to her roof for safety. No villagers were killed that night, but the elephants ate budding rice seedlings, damaging the season’s crop.

Around three decades ago, elephants began to push into Chhattisgarh, the state where Duru is from, migrating southwest from their historical habitats. Scientists aren’t sure why they began to move, but some think they were pushed out as mining and other human activities devastated their home forests. India lost 1.6 million acres of forest between 2015 and 2020, second only to Brazil.

Those shifts have generated friction between humans and the pachyderms: Each year, elephants kill around 400 people in India, according to a 2020 study. Around 150 elephants die due to conflict with humans as well, with many more electrocuted by fences or struck by trains.

Now, many people — from farmers to forest service employees to elephant scientists — are working to understand the movements and behaviors of a species that’s been subject to decades of intensive conservation work. As farmers like Duru try to come to terms with their new neighbors, many researchers are developing a nuanced view of elephant life — one which focuses on them less as pests out to eat people’s hard-earned crops, and more as members of complex communities, with distinctive traditions and cultures, undergoing a series of pressures that can have tragic consequences.

In studying human-elephant conflict, researchers have often focused on mapping the animals’ movements and numbers, studying whole populations rather than zooming in on how a single elephant might weigh risk and reward.

“We’ve not really taken behavior as a core or the basis for our decisions,” said Nishant Srinivasaiah, an elephant behavior ecologist based in south India. While group data is also important, he and his colleagues believe researchers should pay more attention to how individual elephants make decisions, understanding them as highly intelligent animals attempting to navigate a changing environmental and social landscape.

An old debate in Indian conservation circles is whether humans have the right to their lives and livelihood in areas where they come up against wildlife, or whether the state should sometimes evict people to protect the animals. This already contentious argument fractures in places like Chhattisgarh, where the state is grappling with how to protect both communities.

Researchers across Asia, like Srinivasaiah, are trying to bridge this gap by gathering data to help understand the complex internal lives of elephants — and what interventions humans can make to nudge the animals away from conflict. When — and whether — those interventions might make a significant difference is still an open question.


It’s a blazing hot afternoon in December 2022, and Srinivasaiah deftly pilots his rugged Maruti Suzuki Gypsy through the narrow one-lane road of a village near the Cauvery Wildlife Sanctuary in south India. He eventually pulls up to a white concrete house, home to the field office of the Frontier Elephant Program, an interdisciplinary research group.

Srinivasaiah works in the southern state of Karnataka, far from Chhattisgarh. But he and his colleagues want to answer questions that are relevant to people like Duru: How do elephants make decisions about where to forage or migrate? Why has their social behavior changed over time? And how can the animals be nudged away from conflict?

Inside the group’s village office are two cots and a wide table where Srinivasaiah and his colleagues set up their laptops. The heart of the group’s tracking operations hangs on a wall: A large whiteboard that lists the status of the dozens of camera traps that the team has seeded in the deciduous forest near the village.

The devices are installed on trees at about four to five feet off the ground, and take photos when they detect movement. Researchers also follow elephants on foot to photograph them and observe their behavior. These thousands of images create a library of the activities, movement, and habits of hundreds of elephants in and around the 250,000-acre wildlife sanctuary. After spending countless hours sifting through photos, Srinivasaiah and his colleagues can often recognize an individual from the shape of an ear, a chipped tusk, a scar.

The team divides observed behaviors into three categories — affiliative interactions, when elephants bond with each other; agonistic behavior, when they exert dominance; and neutral or self-directed behavior, such as eating, flapping their ears, or dusting themselves. They track how often elephants engage in these behaviors, and the precise places they do them.

Using this information, the team can tease out subtleties of elephant interactions. For instance, researchers have long understood that adolescent male Asian elephants disperse from their natal herds, and generally live a relatively solitary lifestyle until they enter musth, the period during which they seek to mate. But Srinivasaiah has found that in areas populated by humans, bulls are starting to form long-lasting cohesive groups even when they are not raiding crops. In a 2019 study, Srinivasaiah and several colleagues speculated that the male elephants may choose to band together to survive threats from human development.

His team has also observed that, while elephants communicate audibly in forested areas, when they are near humans they switch to infrasound communication at a frequency below the range of human hearing. “Elephants are exhibiting something that is called third-order behavior, which is ‘I know that you know that I am here’,” he said. Only a few other species, such as dolphins and chimpanzees, exhibit this kind of plasticity, Srinivasaiah said.

Understanding these types of behaviors, he and other elephant researchers say, represents a shift in the field of human-elephant conflict. Rather than seeing the species as a monolith that responds to stimuli without variation, researchers are getting a better view of their complexity, which could in turn inform how the government designs interventions to reduce conflicts.

Srinivasaiah said that a newly popular intervention in India, born from the careful observation of elephant decision-making, might help to reduce conflicts. Elephants can dismantle regular electrified fences within months of encountering them for the first time, often just by pushing them down with large branches. In response to this behavior, a new kind of fence consists of lightly electrified wires, suspended several feet above the ground. The free-hanging wires sway in the breeze so that the elephants find it difficult to tear them down, even as they get buzzed by them.

Srinivasaiah’s hope is that the elephants will conclude the reward of passing a fence isn’t worth the pain and hassle. A prototype fence that the Frontier Elephant Program installed around a mango orchard in their study area has successfully kept elephants away for three years now. Elephants had previously raided the same orchard 38 times in the span of two years.

Increased development — such as urbanization and mining projects — means that more undisturbed elephant habitat will be converted to human use, leading to more human-elephant interactions, Srinivasaiah said. “Knowing elephants and how they are deciding their next move, that is critical for us,” he added.


In the 1980s, when researchers began to study how Asian elephants come into conflict with humans, the elephants themselves were on the move, part of a series of massive changes that have reshaped elephant — and human — life in India.

Entire elephant clans, led by their matriarchs, decided to move away from their original habitats in forested areas in southern and eastern India. One of the first recorded elephant migrations in India was in the early 1980s, when around 50 elephants moved from Tamil Nadu, India’s southernmost state, across state boundaries to Andhra Pradesh.

Raman Sukumar, a pioneering elephant ecologist in India, had been observing that clan in a particular valley. “In 1983, my area’s elephants were suddenly not there,” he said.

Researchers outside of India have also noticed the strain that environmental pressures and poaching seem to put on elephant communities, leading to upheaval. Clans have moved to new places. Elephant behavior has shifted. In Kruger National Park in South Africa, researchers found that young elephants who had survived a mass culling suffered psychological distress similar to PTSD.

“Elephant society in Africa has been decimated by mass deaths and social breakdown from poaching, culls, and habitat loss,” a group of researchers wrote in Nature in 2005.

Similar shifts, happening over decades, are felt keenly in places like Gudrudih, where Duru and her neighbors have to adjust to new elephants.

In the nearby village of Borid, which sits adjacent to the Barnawapara Wildlife Sanctuary, elephants are a constant threat. People have changed their cultivation patterns after learning that elephants prefer some crops, such as rice, to others.

Locals feel like they have limited recourse. Under India’s Wild Life (Protection) Act of 1972, killing an elephant is punishable by three to seven years in prison which makes people wary of more violent action against the large mammals.

“We have no traditional way to chase elephants,” said Dashrath Khairwar, a farmer. Like others in the area, he believes that the government has conspired to relocate the elephants here from another forest.

Residents say the state has done little to help them adjust to their new neighbors. Though the state’s Forest Department has publicized a helpline for elephant sightings, locals say that they do not always get assistance when they call. Instead, they have to settle for compensation for crop losses of 500 to 700 rupees ($6 to $9) per acre. Saroj Duru said she received the equivalent of about $120 for three years of crop damage, and nothing at all for rebuilding her home compound.

Government officials told Undark in an interview that their interventions have been effective in cutting down on crop damage and loss of life. In 2019, state officials recorded damage to nearly 4,000 acres of agricultural land in Mahasamund district. Between January and July 2022, the state recorded only 2.2 acres of damage in the same district. However, Saroj Duru says that in 2022, around 10 to 15 people in just her village reported crop damage.

Pankaj Rajput, the highest-ranking forest official of the district, attributes the reduction in casualties and damage to a central government initiative called the Gaj Yatra, which roughly translates to Elephant Journey. Based on research by the Wildlife Trust of India, Gaj Yatra — which launched in 2017 — aims to sensitize people to protect elephants. The Forest Department alerts citizens about elephant movements through WhatsApp and educates people about how to engage with them.

In the 14 months since they implemented Gaj Yatra in his district, Rajput said in December, “we have had zero human deaths, zero human injuries and zero elephant deaths or injuries.”

In January 2022, however, a young elephant was killed in an illegal electrified fence in Mahasamund district, said resident Hemlata Rajput. Three people who set up the fence, she said, have been charged.

But, villagers said, the elephants are still there — and still feel like a constant threat.

In Borid, as in Gudrudih village, people are grappling with their own questions. Where did the animals come from? Are they going to be here forever? And can the villagers ever coexist with the elephants?


Like Srinivasaiah, other researchers are now working to understand individual elephant behavior in order to address those questions. “There is a growing focus on how ecological and behavioral data can be applied directly to human-elephant conflict mitigation,” said Joshua Plotnik, a comparative psychologist at Hunter College who studies elephants in Thailand.

In a 2022 paper, Plotnik and his colleagues reported on how elephants’ decisions to raid crop fields or interact with humans can be influenced by sensory information from scents or sounds. Mitigation strategies might target these senses, such as by burning chilies to prevent elephants from smelling crops; or by playing audio of matriarchal elephant groups — which male elephants tend to avoid when not sexually active — to deter the bulls from venturing to human settlements.

Such strategies tap into what researchers already know or are beginning to learn about disgust or disease-avoidance in elephants, as Plotnik and colleagues wrote about in a 2023 paper for the Journal of Animal Ecology.

But while scientists hope such research could lead to engineering solutions that minimize conflict, the fruits of their labor have not yet quite come to pass. Most interventions still rely on a one-size-fits-all approach rather than the more tailored technique that researchers such as Plotnik and Srinivasaiah envision.

If and when such interventions are developed, it’s also not certain that elephants won’t outsmart them. “It becomes sort of like an arms race,” as each new crop raiding solution is bested by the animals, said T.N.C. Vidya, a researcher of elephant socioecology and behavior at the Jawaharlal Nehru Center for Advanced Scientific Research.

“When you have things like conflict, usually the problem is that people are looking at the conflict from the human point of view,” said Vidya. It’s important, she added, to examine their behavior independent of humans and outside of conflict, “because that probably influences what they’re doing when they’re coming into conflict.”

Frontier elephants exist at the boundary of human-use landscapes, which makes clashes inevitable. And as those boundaries expand, such clashes are likely to increase in frequency.

For now, many people in India feel stuck — uncertain of how to respond to the elephants, reliant on government aid that they said is often not forthcoming, and forced to invest in costly interventions that may have limited effect.

Many of the measures that they can take to protect themselves imply huge long-term investments. In Nandbaru village, close to the Barnawapara Wildlife Sanctuary, a resident said the village government spent 250,000 rupees, or $3,000, to set up an electrified fence around their village over three years. At one point, an elephant got trapped inside that fence, leaving the entire village stuck inside the perimeter until the Forest Department was able to extricate it.

If elephants decide to move on, this will have been only a temporary deterrent. After a research team in Chhattisgarh radio collared elephants in the northern part of the state, they found that some of them have since moved further, leaving behind only the lingering memories of fear and uncertainty.

Khairwar, the farmer from Borid, lamented the indifference of the Forest Department. When people call helpline numbers for help to chase elephants away from fields, officials do not often come. “They come only after an incident happens,” he said. Resigned to having to deal with elephants for years to come, he added, “They are here to stay.”


Mridula Chari is an independent journalist covering development and the environment from Mumbai, India.

Reporting for this story was supported in part by a grant from the Keystone Foundation, an environmental and conservation advocacy organization based in Tamil Nadu, India, that focuses on sustainable development and indigenous rights.

This article was originally published on Undark. Read the original article.

Wildlife photo

The post Elephants have complex communities and distinct traditions appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A fish-kill mystery in a remote Alaska village takes a toxic turn https://www.popsci.com/environment/cyanobacteria-fish-kill-kotzebue-alaska/ Mon, 08 May 2023 01:59:00 +0000 https://www.popsci.com/?p=539234
Yellow-green cyanobacteria bloom in Upper Klamath Lake, Oregon. Events like these can cause mass fish dieoffs.
Cyanobacteria, sometimes also called blue-green algae, are fairly common in lakes, such as in this image taken at Upper Klamath Lake, Oregon, but they can also grow in brackish water and the ocean. Photo by Christopher Boswell/Alamy Stock Photo

A foul chartreuse sea of cyanobacteria drove researchers to learn more about Arctic water quality.

The post A fish-kill mystery in a remote Alaska village takes a toxic turn appeared first on Popular Science.

]]>
Yellow-green cyanobacteria bloom in Upper Klamath Lake, Oregon. Events like these can cause mass fish dieoffs.
Cyanobacteria, sometimes also called blue-green algae, are fairly common in lakes, such as in this image taken at Upper Klamath Lake, Oregon, but they can also grow in brackish water and the ocean. Photo by Christopher Boswell/Alamy Stock Photo

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

Dead fish were everywhere, speckling the beach near town and extending onto the surrounding coastline. The sheer magnitude of the October 2021 die-off, when hundreds, possibly thousands, of herring washed up, is what sticks in the minds of the residents of Kotzebue, Alaska. Fish were “literally all over the beaches,” says Bob Schaeffer, a fisherman and elder from the Qikiqtaġruŋmiut tribe.

Despite the dramatic deaths, there was no apparent culprit. “We have no idea what caused it,” says Alex Whiting, the environmental program director for the Native Village of Kotzebue. He wonders if the die-off was a symptom of a problem he’s had his eye on for the past 15 years: blooms of toxic cyanobacteria, sometimes called blue-green algae, that have become increasingly noticeable in the waters around this remote Alaska town.

Kotzebue sits about 40 kilometers north of the Arctic Circle, on Alaska’s western coastline. Before the Russian explorer Otto von Kotzebue had his name attached to the place in the 1800s, the region was called Qikiqtaġruk, meaning “place that is almost an island.” One side of the two-kilometer-long settlement is bordered by Kotzebue Sound, an offshoot of the Chukchi Sea, and the other by a lagoon. Planes, boats, and four-wheelers are the main modes of transportation. The only road out of town simply loops around the lagoon before heading back in.

In the middle of town, the Alaska Commercial Company sells food that’s popular in the lower 48—from cereal to apples to two-bite brownies—but the ocean is the real grocery store for many people in town. Alaska Natives, who make up about three-quarters of Kotzebue’s population, pull hundreds of kilograms of food out of the sea every year.

“We’re ocean people,” Schaeffer tells me. The two of us are crammed into the tiny cabin of Schaeffer’s fishing boat in the just-light hours of a drizzly September 2022 morning. We’re motoring toward a water-monitoring device that’s been moored in Kotzebue Sound all summer. On the bow, Ajit Subramaniam, a microbial oceanographer from Columbia University, New York, Whiting, and Schaeffer’s son Vince have their noses tucked into upturned collars to shield against the cold rain. We’re all there to collect a summer’s worth of information about cyanobacteria that might be poisoning the fish Schaeffer and many others depend on.


Huge colonies of algae are nothing new, and they’re often beneficial. In the spring, for example, increased light and nutrient levels cause phytoplankton to bloom, creating a microbial soup that feeds fish and invertebrates. But unlike many forms of algae, cyanobacteria can be dangerous. Some species can produce cyanotoxins that cause liver or neurological damage, and perhaps even cancer, in humans and other animals.

Many communities have fallen foul of cyanobacteria. Although many cyanobacteria can survive in the marine environment, freshwater blooms tend to garner more attention, and their effects can spread to brackish environments when streams and rivers carry them into the sea. In East Africa, for example, blooms in Lake Victoria are blamed for massive fish kills. People can also suffer: in an extreme case in 1996, 26 patients died after receiving treatment at a Brazilian hemodialysis center, and an investigation found cyanotoxins in the clinic’s water supply. More often, people who are exposed experience fevers, headaches, or vomiting.

When phytoplankton blooms decompose, whole ecosystems can take a hit. Rotting cyanobacteria rob the waters of oxygen, suffocating fish and other marine life. In the brackish waters of the Baltic Sea, cyanobacterial blooms contribute to deoxygenation of the deep water and harm the cod industry.

Dark green cyanobacteria in the ocean, seen from NASA satellite
With the right combination of nutrients, light, and temperature, cyanobacteria can reproduce quickly or “bloom.” NASA

As climate change reshapes the Arctic, nobody knows how—or if—cyanotoxins will affect Alaskan people and wildlife. “I try not to be alarmist,” says Thomas Farrugia, coordinator of the Alaska Harmful Algal Bloom Network, which researches, monitors, and raises awareness of harmful algal blooms around the state. “But it is something that we, I think, are just not quite prepared for right now.” Whiting and Subramaniam want to change that by figuring out why Kotzebue is playing host to cyanobacterial blooms and by creating a rapid response system that could eventually warn locals if their health is at risk.


Whiting’s cyanobacteria story started in 2008. One day while riding his bike home from work, he came across an arresting site: Kotzebue Sound had turned chartreuse, a color unlike anything he thought existed in nature. His first thought was, Where’s this paint coming from?

The story of cyanobacteria on this planet goes back about 1.9 billion years, however. As the first organisms to evolve photosynthesis, they’re often credited with bringing oxygen to Earth’s atmosphere, clearing the path for complex life forms such as ourselves.

Over their long history, cyanobacteria have evolved tricks that let them proliferate wildly when shifts in conditions such as nutrient levels or salinity kill off other microbes. “You can think of them as sort of the weedy species,” says Raphael Kudela, a phytoplankton ecologist at the University of California, Santa Cruz. Most microbes, for example, need a complex form of nitrogen that is sometimes only available in limited quantities to grow and reproduce, but the predominant cyanobacteria in Kotzebue Sound can use a simple form of nitrogen that’s found in virtually limitless quantities in the air.

Cyanotoxins are likely another tool that help cyanobacteria thrive, but researchers aren’t sure exactly how toxins benefit these microbes. Some scientists think they deter organisms that eat cyanobacteria, such as bigger plankton and fish. Hans Paerl, an aquatic ecologist from the University of North Carolina at Chapel Hill, favors another hypothesis: that toxins shield cyanobacteria from the potentially damaging astringent byproducts of photosynthesis.

Around the time when Kotzebue saw its first bloom, scientists were realizing that climate change would likely increase the frequency of cyanobacterial blooms, and what’s more, that blooms could spread from fresh water—long the focus of research—into adjacent brackish water. Kotzebue Sound’s blooms probably form in a nearby lake before flowing into the sea.


The latest science on cyanobacteria, however, had not reached Kotzebue in 2008. Instead, officers from the Alaska Department of Fish and Game tested the chartreuse water for petroleum and its byproducts. The tests came back negative, leaving Whiting stumped. “I had zero idea,” he says. It was biologist Lisa Clough, then from East Carolina University and now with the National Science Foundation, with whom Whiting had previously collaborated, who suggested he consider cyanobacteria. The following year, water sample analysis confirmed she was correct.

In 2017, Subramaniam visited Kotzebue as part of a research team studying sea ice dynamics. When Whiting learned that Subramaniam had a long-standing interest in cyanobacteria, “we just immediately clicked,” Subramaniam says.

Environmental scientists in waterproof gear on a boat full of gear off of Kotzebue, Alaska
Alex Whiting, the environmental program director for the Native Village of Kotzebue, left, and Ajit Subramaniam, a microbial oceanographer from Columbia University, New York, right, prepare water-monitoring equipment for deployment. Photo by Saima Sidik

The 2021 fish kill redoubled Whiting and Subramaniam’s enthusiasm for understanding how Kotzebue Sound’s microbial ecosystem could affect the town. A pathologist found damage to the dead fish’s gills, which may have been caused by the hard, spiky shells of diatoms (a type of algae), but the cause of the fish kill is still unclear. With so many of the town’s residents depending on fish as one of their food sources, that makes Subramaniam nervous. “If we don’t know what killed the fish, then it’s very difficult to address the question of, Is it safe to consume?” he says.

I watch the latest chapter of their collaboration from a crouched position on the deck of Schaeffer’s precipitously swaying fishing boat. Whiting reassures me that the one-piece flotation suit I’m wearing will save my life if I end up in the water, but I’m not keen to test that theory. Instead, I hold onto the boat with one hand and the phone I’m using to record video with the other while Whiting, Subramaniam, and Vince Schaeffer haul up a white-and-yellow contraption they moored in the ocean, rocking the boat in the process. Finally, a metal sphere about the diameter of a hula hoop emerges. From it projects a meter-long tube that contains a cyanobacteria sensor.

The sensor allows Whiting and Subramaniam to overcome a limitation that many researchers face: a cyanobacterial bloom is intense but fleeting, so “if you’re not here at the right time,” Subramaniam explains, “you’re not going to see it.” In contrast to the isolated measurements that researchers often rely on, the sensor had taken a reading every 10 minutes from the time it was deployed in June to this chilly September morning. By measuring levels of a fluorescent compound called phycocyanin, which is found only in cyanobacteria, they hope to correlate these species’ abundance with changes in water qualities such as salinity, temperature, and the presence of other forms of plankton.

Environmental scientists in waterproof gear drop water-monitoring equipment into the waters off Kotzebue, Alaska
Whiting, Subramaniam, and Vince Schaeffer, son of the boat’s captain, Bob Schaeffer, deploy the water-monitoring equipment. Information gathered from the device will help determine the conditions in which cyanobacteria tend to bloom. Photo by Saima Sidik

Researchers are enthusiastic about the work because of its potential to protect the health of Alaskans, and because it could help them understand why blooms occur around the world. “That kind of high resolution is really valuable,” says Malin Olofsson, an aquatic biologist from the Swedish University of Agricultural Sciences, who studies cyanobacteria in the Baltic Sea. By combining phycocyanin measurements with toxin measurements, the scientists hope to provide a more complete picture of the hazards facing Kotzebue, but right now Subramaniam’s priority is to understand which species of cyanobacteria are most common and what’s causing them to bloom.

Farrugia, from the Alaska Harmful Algal Bloom Network, is excited about the possibility of using similar methods in other parts of Alaska to gain an overall view of where and when cyanobacteria are proliferating. Showing that the sensor works in one location “is definitely the first step,” he says.


Understanding the location and potential source of cyanobacterial blooms is only half the battle: the other question is what to do about them. In the Baltic Sea, where fertilizer runoff from industrial agriculture has exacerbated blooms, neighboring countries have put a lot of effort into curtailing that runoff—and with success, Olofsson says. Kotzebue is not in an agricultural area, however, and instead some scientists have hypothesized that thawing permafrost may release nutrients that promote blooms. There’s not much anyone can do to prevent this, short of reversing the climate crisis. Some chemicals, including hydrogen peroxide, show promise as ways to kill cyanobacteria and bring temporary relief from blooms without affecting ecosystems broadly, but so far chemical treatments haven’t provided permanent solutions.

Instead, Whiting is hoping to create a rapid response system so he can notify the town if a bloom is turning water and food toxic. But this will require building up Kotzebue’s research infrastructure. At the moment, Subramaniam prepares samples in the kitchen at the Selawik National Wildlife Refuge’s office, then sends them across the country to researchers, who can take days, sometimes even months, to analyze them. To make the work safer and faster, Whiting and Subramaniam are applying for funding to set up a lab in Kotzebue and possibly hire a technician who can process samples in-house. Getting a lab is “probably the best thing that could happen up here,” says Schaeffer. Subramaniam is hopeful that their efforts will pay off within the next year.

In the meantime, interest in cyanobacterial blooms is also popping up in other regions of Alaska. Emma Pate, the training coordinator and environmental planner for the Norton Sound Health Corporation, started a monitoring program after members of local tribes noticed increased numbers of algae in rivers and streams. In Utqiaġvik, on Alaska’s northern coast, locals have also started sampling for cyanobacteria, Farrugia says.

Whiting sees this work as filling a critical hole in Alaskans’ understanding of water quality. Regulatory agencies have yet to devise systems to protect Alaskans from the potential threat posed by cyanobacteria, so “somebody needs to do something,” he says. “We can’t all just be bumbling around in the dark waiting for a bunch of people to die.” Perhaps this sense of self-sufficiency, which has let Arctic people thrive on the frozen tundra for millennia, will once again get the job done.

The reporting for this article was partially funded by the Council for the Advancement of Science Writing Taylor/Blakeslee Mentored Science Journalism Project Fellowship.

The post A fish-kill mystery in a remote Alaska village takes a toxic turn appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How to keep harmful algae blooms from spoiling your vacation https://www.popsci.com/environment/algae-bloom-beach-advice/ Fri, 05 May 2023 22:00:00 +0000 https://www.popsci.com/?p=539227
People and animals can be exposed to HAB toxins through many routes.
People and animals can be exposed to HAB toxins through many routes. DepositPhotos

Algae can grow out of control, especially when the water is warm and slow moving.

The post How to keep harmful algae blooms from spoiling your vacation appeared first on Popular Science.

]]>
People and animals can be exposed to HAB toxins through many routes.
People and animals can be exposed to HAB toxins through many routes. DepositPhotos

This article was originally featured on The Conversation.

Plunging into the ocean or a lake is one of the great joys of summer. But arriving at the beach to find water that’s green, red or brown, and possibly foul-smelling, can instantly spoil the party.

As a toxicologist, I study health risks from both synthetic and natural substances. I’ve conducted research into early detection of harmful algal blooms, or HABs, which are an increasing threat to humans, animals and the environment.

Toxins produced during these blooms have been implicated in human and animal illnesses in at least 43 states. Scientists have estimated that in the U.S. alone, freshwater HABs cause more than US$4.6 billion in damage yearly. Here’s what to know about them if you’re bound for the water’s edge this summer.

Tiny organisms, big impacts

Algae and cyanobacteria – often called blue-green algae – are simple, plantlike organisms that live in water. They can grow out of control, or “bloom,” especially when the water is warm and slow moving. Climate change is making water bodies warmer, increasing the risk of HABs.

The other major factor that drives blooms is high levels of nutrients like nitrogen and phosphorus, which fertilize algae. Nutrient pollution comes mainly from agriculture, wastewater treatment plants, septic systems and fossil fuel combustion.

Sometimes these blooms contain organisms that produce toxins – an umbrella term for many poisonous substances that come from animals or plants and can make people and animals sick and adversely affect the environment. These events are called harmful algal blooms.

HABs occur throughout the U.S. and worldwide, in both saltwater and freshwater environments. They pose significant health risks to human, pets, livestock and wildlife; damage ecosystems; increase water treatment costs; restrict recreational activities; and cut into economic revenues.

People and animals can be exposed to HAB toxins through many routes. These include skin contact during activities such as swimming or boating; inhaling airborne droplets that contain toxins; swallowing contaminated water; or eating food or supplements that contain toxins. The most severe effects generally result from consuming contaminated seafood.

An array of toxins

There are numerous HAB toxins, including substances such as microcystin, saxitoxin, cylindrospermopsin, anatoxin-A and domoic acid. Each has a different action on the body, so HABs can have diverse harmful effects.

Typical symptoms of illness from exposure to HAB toxins can include stomach pain, vomiting or diarrhea; headache, fever, tiredness or other general symptoms; skin, eye, nose or throat irritation; and neurological symptoms such as muscle weakness or dizziness. Depending on the toxin, higher levels of exposure can result in tremors or seizures, respiratory distress, kidney toxicity, liver toxicity and even death.

As with many environmental exposures, children and older people may be especially sensitive to HAB toxins. People who regularly consume seafood caught in HAB-prone areas are also at risk of long-term health effects from potentially frequent, low-level exposures to HAB toxins.

Recognizing and responding to HABs

It’s not possible to tell whether a bloom is harmful just by looking at it, but there are some warning signs. If the water appears green, red, brown or yellowish in color; has a strong musty or fishy odor; has foam, scum, algal mats or paintlike streaks on the surface; or if there are dead fish or other marine life in the water or washed up on the shoreline, it’s likely that a HAB may be occurring.

If you are unsure whether a bloom is harmful or not, contact your local health department or environmental agency for guidance. As a general rule, it’s good to check with local agencies to see whether there are any relevant warnings when you go to the beach.

If you are notified of a bloom in a nearby body of water or in your public drinking water supply, the most important thing you can do to reduce your chances of getting sick is to follow local or state guidance. If you see signs of a bloom, stay out of the water and keep your pets out of the water.

It’s also important to follow local guidelines about consuming seafood caught through recreational fishing. It’s important to be aware that cooking contaminated seafood or boiling contaminated water does not destroy the toxins.

Be informed

The U.S. Centers for Disease Control and Prevention provides resources and recommendations related to HABs and ways to stay safe. Pet owners should also learn how to protect their dogs from HABs.

Other federal agencies that offer information about HABs include the U.S. National Office for Harmful Algal Blooms and the National Institute of Environmental Health Sciences.

Many states conduct HAB monitoring programs, especially in areas that are known to be vulnerable to blooms, such as western Lake Erie. The U.S. Environmental Protection Agency offers HAB resources by state. Apps used by water quality managers and state officials who make management decisions about public water supply safety, including CyAN Android and CyANWeb, may contain useful information about HABs in your area.

What’s being done about HABs?

Many efforts are underway to prevent, control and mitigate HABs and provide early warnings to water system managers and health officials.

One example in the U.S. is the
Cyanobacteria Assessment Network, or CyAN, a collaborative effort across several government agencies to develop an early warning indicator system to detect algal blooms in freshwater systems. There are also several ongoing projects for HAB forecasting by region.

At the global scale, the Harmful Algal Information System will eventually include harmful algal events and information from harmful algae monitoring and management systems worldwide.

Citizen scientists can provide invaluable help by monitoring local waters. If you would like to participate, consider joining the Phytoplankton Monitoring Network or the Cyanobacteria Monitoring Collaborative, and download and use the
Cyanobacterial bloom app to report potential HABs in bodies of water you visit.The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The post How to keep harmful algae blooms from spoiling your vacation appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How 2,000-year-old soil could be a lifeline for the Amazon rainforest https://www.popsci.com/environment/amazon-rainforest-dark-earth-soil/ Fri, 05 May 2023 12:00:00 +0000 https://www.popsci.com/?p=539246
Amazonian dark earth (ADE) is a nutrient rich dark soil that could play a role in reforestation.
Amazonian dark earth (ADE) is a nutrient rich dark soil that could play a role in reforestation. Luís Felipe Guandalin Zagatto

Amazonia dark earth is chock full of nutrients and stable organic matter that can boost plant growth.

The post How 2,000-year-old soil could be a lifeline for the Amazon rainforest appeared first on Popular Science.

]]>
Amazonian dark earth (ADE) is a nutrient rich dark soil that could play a role in reforestation.
Amazonian dark earth (ADE) is a nutrient rich dark soil that could play a role in reforestation. Luís Felipe Guandalin Zagatto

Nicknamed the “Earth’s lungs” for its dense oxygen producing forests, the Amazon can absorb 132 billion tons of the planet’s carbon. However, more than 30,000 square miles of the Amazon have been lost since the 1970s. Deforestation, clearing land for agriculture, and climate change fueled wildfires have severely taken its toll on the region, where about 10,000 acres of forest (almost the size of California) has been destroyed every day since 1988. 

However, there is still time to save it—and now scientists may have a “secret weapon” that could not only help reforest the Amazon, but other depleted forests around the world. And it comes from soil deep in the region’s past.

[Related: Brazil’s presidential election is a win for the Amazon—and the planet.]

From roughly 450 BCE and 950 CE, the people living along today’s Amazonia transformed the originally poor soil over many human generations. The soils were enriched with charcoal from low-intensity fires for cooking and burning refuse, animal bones, broken pottery, compost, and manure. The fertile result of these processes is Amazonian dark earth (ADE), or terra preta. The exceptionally fertile black soil is rich in nutrients and stable organic matter derived from charcoal. According to a study published May 5 in the journal Frontiers in Soil Science, it now may help reforest the same area where it was created. 

“Here we show that the use of ADEs can enhance the growth of pasture and trees due  to their high levels of nutrients, as well as to the presence of beneficial bacteria and archaea in the soil microbial community,” co-author Luís Felipe Zagatto, a graduate student at the Center for Nuclear Energy in Agriculture at São Paulo University in Brazil said in a statement. “This means that knowledge of the ‘ingredients’ that make ADEs so very fertile could be applied to help speed up ecological restoration projects.”

The team’s primary aim was to study how ADEs, or ultimately soils with a microbiome that has been artificially composed to imitate them, could boost reforestation. To do this, they conducted controlled experiments in a lab to mimic the ecological succession that happens in the soil when pasture in deforested areas is actively restored to its forest state. 

They sampled ADE from the Caldeirão Experimental Research Station in the Brazilian state of Amazonas. The control soil in the experiments was from the Luiz de Queiróz Superior School of Agriculture in the state of São Paulo. They filled 36 pots with about 6.6 pounds of soil inside a greenhouse with an average temperature of 94ºF to anticipate global warming beyond current average temperatures in Amazonia (between 71 and 82ºF).

One third of the pots only received the control soil, while another third received a 4 to 1 mixture of the control soil and ADE, and the final third has 100 percent ADE. They planted seeds of palisade grass, a common forage for Brazilian livestock, to imitate pasture. The seedlings were allowed to grow for 60 days before the grass was cut so that only the roots remained in the soil. 

Each of the three soils were then replanted with tree seeds of either a colonizing species called Ambay pumpwood, Peltophorum dubium, or with cedro blanco.

[Related: The Amazon is on the brink of a climate change tipping point.]

The seeds were allowed to germinate and then grow for 90 days and then the team measured their height, dry mass, and extension of the roots. They also quantified the changes in the soil’s pH, microbial diversity, texture, and concentration of organic matter–potassium, calcium, magnesium, aluminum, sulfur, boron, copper, iron, and zinc–over the course of the experiment. 

At the beginning, ADEs showed greater amounts of nutrients than control soil, roughly 30 times more phosphorus and three to five times more of each of the other measured nutrients, except manganese. The ADE also had a higher pH and had more sand and silt in it, but less clay. 

Following the experiment, the control soils contained less nutrients than they had at the start, which reflects take-up by the plants. However, the 100 percent ADE soils remained richer than control soils, while nutrient levels were intermediate in the 20 percent ADE soils.

The 20 percent and 100 percent ADE soils also supported a greater biodiversity of both  bacteria and archaea than control soils.

“Microbes transform chemical soil particles into nutrients that can be taken up by plants. Our data showed that ADE contains microorganisms that are better at this transformation of soils, thus providing more resources for plant development,” co-author and University of São Paulo molecular biologist Anderson Santos de Freitas said in a statement.  “For example, ADE soils contained more beneficial taxa of the bacterial families Paenibacillaceae, Planococcaceae, Micromonosporaceae, and Hyphomicroblaceae.”

Additionally, adding ADE to soil improved the growth and development of plants. The dry mass of palisade grass was increased 3.4 times in the 20 percent ADE soil and 8.1 times in 100 percent ADE compared to in control soil. 

These results were enough to convince the team that ADE can boost plant growth, but it does come with some caution. 

“ADE has taken thousands of years to accumulate and would take an equal time to regenerate in nature if used,” co-author and  University of São Paulo molecular biologist Siu Mui Tsai said in a statement. “Our recommendations aren’t to utilize ADE itself, but rather to copy its characteristics, particularly its microorganisms, for use in future ecological restoration projects.”

The post How 2,000-year-old soil could be a lifeline for the Amazon rainforest appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The epic journey of dust in the wind often ends with happy plankton https://www.popsci.com/science/dust-plankton-ocean-blooms/ Thu, 04 May 2023 18:00:00 +0000 https://www.popsci.com/?p=539003
A swirl of dust from the Sahara desert is carried on winds above the Mediterranean.
NASA's Terra satellite captured this Saharan dust blowing over Italy and the Mediterranean Sea in December 2022. NASA Earth Observatory/MODIS

The voyage of a dust particle links sand to sky to the sea.

The post The epic journey of dust in the wind often ends with happy plankton appeared first on Popular Science.

]]>
A swirl of dust from the Sahara desert is carried on winds above the Mediterranean.
NASA's Terra satellite captured this Saharan dust blowing over Italy and the Mediterranean Sea in December 2022. NASA Earth Observatory/MODIS

A dust particle can go on a great voyage. It starts on land; it continues in the air, where winds carry the particle up, up, and away. And—at least for some dust particles—that saga might end with a fall into seawater thousands of miles from where it began.

Dust intrinsically links Earth’s sands, skies, and seas. Particles that fall into water can deliver nutrients that feed life in the sea, creating great algal blooms. Scientists are learning more about the process, but there are many questions they still haven’t answered about how—and if—it works.

In a new study published today in the journal Science, scientists have answered one previous mystery. They’ve shown that more dust does, indeed, create more phytoplankton.

“Understanding how the ocean works is an underlying motivation,” says Toby Westberry, a botanist at Oregon State University, and the paper’s lead author. “It is vast and still poorly understood in many respects.”

Much of the world’s dust begins its journey in the world’s deserts. Winds blowing across the sands might carry some fine particles away. And the longer that sand sits in one place, the more dust that place generates: The world’s great dust generator lies in North Africa: the vast expanses of the Sahara. 

From there, dust particles are passengers of the world’s wind patterns. For instance, North African dust might ride the westerlies to Europe, or it might ride the trade winds from North Africa across the Atlantic. 

Inevitably, some dust falls into the world’s oceans along the way, unloading the cargo it carried from the deserts—elements like phosphorus and iron. The atmosphere is not inert, either, and adds new chemicals to airborne particles: As dust rides high through the skies of Earth’s troposphere, it collects nitrogen from the surrounding air. When dust delivers this nitrogen and other nutrients to the water, they encourage phytoplankton to bloom—tinting the oceans greenchanging the very color of the oceans.

Atmospheric dust isn’t the primary source of nutrients for sea plants; scientists think that they mainly rely on what rises as water upwells from the ocean depths. But dust can still make its mark—especially by delivering iron to parts of the ocean that are deficient in the metal.

Scientists pay close attention to dust particles because of their roles as iron couriers.  “Often, when we think of dust,” says Douglas Hamilton, an earth scientist at North Carolina State University, who was not an author on the paper, “we do link it immediately to the iron.”

There are many questions that remain unanswered about this process. What precise role does the dust play in encouraging phytoplankton? Are there different types of dust that cause phytoplankton to respond in different ways? 

Most pressingly, scientists didn’t know the process worked on a worldwide scale. Past research had shown that dust storms could cause local phytoplankton blooms; experiments had also demonstrated that literally pouring iron into seawater encouraged phytoplankton growth. “We’ve done this work, but does it actually matter?” says Hamilton. “We think it does…it’s been proved for isolated events, but it’s never been proved on the global scale.”

The paper’s authors tried to answer that question. NASA had simulated dust flows in the atmosphere between 2003 and 2016 based on observations of how surface temperatures changed with the days. Unsurprisingly, the simulations stated that more dust fell in regions around the Sahara Desert: in seas like the Mediterranean, the North Atlantic, and the Indian Ocean.

[Related: The Sahara used to be full of fish]

With that data in hand, the authors turned to satellite measurements of the seas over that same time period: specifically, observations of ocean color, which could indicate phytoplankton. Indeed, phytoplankton grew on the days after the simulation suggested certain parts of the sea would have received a windfall of dust.

The scientists saw such responses across the globe—but the blooms weren’t always equal. In some areas, increased dust led to a boost in the quantity of phytoplankton; in others, increased dust made the phytoplankton healthier, with brighter chlorophyll. In still others, dust didn’t seem to elicit a response at all.

“Why would this be?” Westberry wonders. “Knowing something about the mineralogy of the dust—what it’s composed of and what nutrients it carries—would be helpful to this end.”

Dust isn’t the only source of food airdropped to phytoplankton. Volcanic eruptions and wildfires both spew out nutrients that enter the ocean. “Volcanic ash is not the same as dust, but conveys nutrients much the same,” Westberry says. Meanwhile, scientists have linked megafires in Australia with phytoplankton in the downwind South Pacific. On the other side of the planet, wildfires in northern forests are associated with blooms around the North Pole.

[Related: In constant darkness, Arctic krill migrate by twilight and the Northern Lights]

“This paper is great, it’s awesome,” says Hamilton. “Then the next question is: Right, now, what about all this other stuff which is also out there? What impact is that having, too?” One future area of study is human activity, which causes climate change and wildfires. We may be responsible for desertification, too, creating more sand for winds to carry away. And our industrial activity—pollution and fossil fuels, for instance—pours out particulates of its own. Scientists think these substances might feed phytoplankton, but they don’t fully know how or if it works across the globe.

Fortunately for scientists, they may see a bloom of their own field. In 2024, NASA will launch a satellite called PACE specifically to observe phytoplankton in the ocean.

The post The epic journey of dust in the wind often ends with happy plankton appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
An ambitious underwater ‘space station’ just got a major research collaborator https://www.popsci.com/technology/noaa-underwater-research-station-proteus/ Wed, 03 May 2023 19:00:00 +0000 https://www.popsci.com/?p=538695
A rendering of Proteus.
A rendering of Proteus. Concept designs by Yves Béhar and fuseproject

Fabien Cousteau's Proteus project will make a bigger splash this year.

The post An ambitious underwater ‘space station’ just got a major research collaborator appeared first on Popular Science.

]]>
A rendering of Proteus.
A rendering of Proteus. Concept designs by Yves Béhar and fuseproject

Today, the National Oceanic and Atmospheric Administration announced that it will be signing a new research agreement with Proteus Ocean Group, which has been drawing up ambitious plans to build a roomy underwater research facility that can host scientists for long stays while they study the marine environment up close. 

The facility, called Proteus, is the brainchild of Fabien Cousteau, the grandson of Jacques Cousteau.

“On PROTEUS™ we will have unbridled access to the ocean 24/7, making possible long-term studies with continuous human observation and experimentation,” Cousteau, founder of Proteus Ocean Group, said in a press release. “With NOAA’s collaboration, the discoveries we can make — in relation to climate refugia, super corals, life-saving drugs, micro environmental data tied to climate events and many others — will be truly groundbreaking. We look forward to sharing those stories with the world.”

This is by no means new territory for the government agency. NOAA has previously commandeered a similar reef base off the coast of Florida called Aquarius. But Aquarius is aging, and space there is relatively confined—accommodating up to six occupants in 400 sq ft. Proteus, the new project, aims to create a habitat around 2,000 sq ft for up to 12 occupants. 

This kind of habitat, the first of which is set to be located off the coast of Curacao in the Caribbean, is still on track to be operational by 2026, Lisa Marrocchino, CEO of Proteus Ocean Group, tells PopSci. A second location is set to be announced soon as well. “As far as the engineering process and partners, we’re just looking at that. We’ll be announcing those shortly. We’re evaluating a few different partners, given that it’s such a huge project.” 

[Related: Jacques Cousteau’s grandson is building a network of ocean floor research stations]

Filling gaps in ocean science is a key part of understanding its role in the climate change puzzle. Now that the collaborative research and development agreement is signed, the two organizations will soon be starting workshops on how to tackle future missions related to climate change, collecting ocean data, or even engineering input in building the underwater base. 

“Those will start progressing as we start working together,” Marrocchino says. “We’re just beginning the design process. It’s to the point where we are narrowing down the location. We’ve got one or two really great locations. Now we’re getting in there to see what can be built and what can’t be built.”

The NOAA partnership is only the beginning for Proteus. According to Marrocchino, Proteus Ocean Group has been chatting with other government agencies, and expects to announce more collaborations later this year. “The space community in particular is super excited about what we’re planning to do,” she says. “They really resonate with the idea that it’s very familiar to them in extreme environments, microgravity and pressure.”

Marrocchino also teased that there are ongoing negotiations with large multi-million dollar global brand partners, which will fund large portions of the innovative research set to happen at Proteus. “We’re seeing a trend towards big corporate brands coming towards the idea of a lab underwater,” she says. “You’ll see some partnership agreements geared towards advancing ocean science.” 

The post An ambitious underwater ‘space station’ just got a major research collaborator appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Volcanoes can be a fiery death sentence for fish https://www.popsci.com/environment/volcanoes-fish-death/ Sat, 29 Apr 2023 23:00:00 +0000 https://www.popsci.com/?p=537187
Explosions can take a toll on nearby fish.
Explosions can take a toll on nearby fish. DepositPhotos

Whether the eruption is underwater or on land, fish don’t have an easy time dealing with nature’s fury.

The post Volcanoes can be a fiery death sentence for fish appeared first on Popular Science.

]]>
Explosions can take a toll on nearby fish.
Explosions can take a toll on nearby fish. DepositPhotos

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

They found the victims floating in the water. Some had eyeballs full of air bubbles, others had their stomachs pushed up into their mouths. Many had severe internal bleeding.

Volcanoes can be life-threatening for fish. A major eruption in 2011 in Chile, for instance, killed 4.5 million of them. Researchers have studied how lava flows, hot gases, and deadly debris can cause mass die-offs or even cut fish off from the sea in suddenly landlocked lakes. But few have been able to document in detail the grisly fates experienced by the unlucky fish that find themselves at the mercy of an angry volcano. That’s why when one erupted underwater off the coast of El Hierro in the Canary Islands for 150 days in late 2011 and early 2012, researchers including Ayoze Castro Alonso at the University of Las Palmas de Gran Canaria saw the perfect opportunity to study the intricacies of these piscine casualties.

Ten years later, the devastating eruption of a terrestrial volcano on nearby La Palma, another of the Canary Islands, gave Alonso and his colleagues a chance to see an altogether different way that volcanoes can butcher unsuspecting fish—by overwhelming them with debris.

The scientists detail in a new paper the shocking injuries suffered by 49 fishes killed by the El Hierro eruption and 14 fishes killed by the volcanism near La Palma. “It’s a volcanic eruption in both cases, but the pathological syndromes are completely different,” says Alonso. “One is acute, the other is chronic.”

The underwater eruption near El Hierro superheated the water by as much as 19 °C, reduced the oxygen level, and rapidly acidified the ocean. Alonso and his colleagues found fishes with gas bubbles in their bodies. The team concluded the injuries occurred while the fishes were still alive because the scientists found inflammatory cells indicative of physical trauma and a severe build-up of blood in the fishes’ tissues.

The researchers’ detailed necropsies also hint that the fishes made a fateful dash for safety. Once the El Hierro eruption was underway, Alonso says, the fishes ascended rapidly. “They tried to escape,” he says.

As the fishes swam upward, sudden depressurization likely caused the gases dissolved in their bodies to bubble out, accounting for the bubbles in their eyes and under their skin. Depressurization would also explain why the animals’ stomachs were pushed up into their mouths and why some had overinflated swim bladders. These gas-filled organs expand when fish rise toward the surface.

On La Palma, though, molten lava flowed over land and into the ocean where the sudden clash with cold water quenched it into a glassy rock known as hyaloclastite. Within a week, huge clouds of volcanic ash settled into the water. Fish died after their gills became clogged with ash, or after their digestive tracts were impacted with fragments of glassy hyaloclastite.

Some of the findings are familiar to Todd Crowl, an ecosystem scientist at Florida International University who was not involved in the current study but who witnessed an eruption on Dominica in the Caribbean during the 1990s. A few centimeters of ash fell on the island, Crowl says, contaminating streams and killing thousands of filter-feeding shrimp. “All that ash just completely clogged up [the shrimp’s] filters,” he says.

Alonso and his colleagues’ research is the first to analyze the wounds fish suffer during a volcanic eruption in such detail—in part because getting access to the victims while their bodies are still fresh is incredibly difficult. After the eruptions at El Hierro and La Palma, local officials gathered up stricken fishes and shipped them on ice to the researchers within a matter of days.

Crowl says this rapid collection let the scientists conduct their analyses before the fishes rotted away. “We get fish kills all the time in Florida because of algal blooms and stuff like that,” Crowl says. “But by the time we get the specimens, there’s lots of degradation.”

Volcano ecologist Charlie Crisafulli, formerly of the US Forest Service, who was not involved in the work, agrees that the study of such fresh victims is novel: “We haven’t seen this before.” However, Crisafulli isn’t certain that the fishes killed by the El Hierro eruption actively tried to flee. Alternatively, they might have been stunned by the rapid changes in their environment and simply floated upward in a state of shock.

Though all of this seems deeply unpleasant, Crisafulli stresses there is a bigger picture here worth thinking about. Volcanoes kill, but they also create. Eruptions contribute nutrients to the environment, and lava flows build new land—sometimes entire islands.

“With this so-called destruction and loss of life, also there’s the creation of new habitats,” Crisafulli says. “What was initially a loss ends up becoming a gain through time.”

This article first appeared in Hakai Magazine and is republished here with permission.

The post Volcanoes can be a fiery death sentence for fish appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Protecting wildlife starts with securing land for animals to roam https://www.popsci.com/environment/land-conservation-size-wildlife/ Fri, 28 Apr 2023 22:00:00 +0000 https://www.popsci.com/?p=537179
A bison herd on the America Prairie reserve in Montana.
A bison herd on the America Prairie reserve in Montana. Photo by Amy Toensing/Getty Images

Here’s what it takes to conserve those much-needed acres.

The post Protecting wildlife starts with securing land for animals to roam appeared first on Popular Science.

]]>
A bison herd on the America Prairie reserve in Montana.
A bison herd on the America Prairie reserve in Montana. Photo by Amy Toensing/Getty Images

This article was originally published on The Conversation.

Driving north on state Highway 66 through the Fort Belknap Indian Reservation in central Montana, it’s easy to miss a small herd of bison lounging just off the road behind an 8-foot fence. Each winter, heavy snows drive bison out of Wyoming’s Yellowstone National Park – the only place in the U.S. where they have lived continuously since prehistoric times – and into Montana, where they are either killed or shipped off to tribal lands to avoid conflict with cattle ranchers.

In the winter of 2022-2023 alone, over 1,500 bison have been “removed,” about 25% of Yellowstone’s entire population. The bison at Fort Belknap are refugees that have been trucked 300 miles to the reservation from past Yellowstone winter culls.

Although bison are the U.S. national mammal, they exist in small and fragmented populations across the West. The federal government is working to restore healthy wild bison populations, relying heavily on sovereign tribal lands to house them.

Indeed, tribal lands are the great wildlife refuges of the prairie. Fort Belknap is the only place in Montana where bison, critically endangered black-footed ferrets and swift foxes, which occupy about 40% of their historic range, all have been restored.

But Indigenous communities can’t and shouldn’t be solely responsible for restoring wildlife. As an ecologist who studies prairie ecosystems, I believe that conserving grassland wildlife in the U.S. Great Plains and elsewhere will require public and private organizations to work together to create new, larger protected areas where these species can roam.

Rethinking how protected areas are made

At a global scale, conservationists have done a remarkable job of conserving land, creating over 6,000 terrestrial protected areas per year over the past decade. But small has become the norm. The average size of newly created protected areas over that time frame is 23 square miles (60 square kilometers), down from 119 square miles (308 square kilometers) during the 1970s.

Chart showing number and average size of new protected areas from 1900-2020
From the 1970s through 2020, the annual rate of protected area creation on land (solid purple bars) increased, but these areas’ average size (hollow bars) decreased.
David Jachowski/Data from Protected Planet, CC BY-ND

Creating large new protected areas is hard. As the human population grows, fewer and fewer places are available to be set aside for conservation. But conserving large areas is important because it makes it possible to restore critical ecological processes like migration and to sustain populations of endangered wildlife like bison that need room to roam.

Creating an extensive protected area in the Great Plains is particularly difficult because this area was largely passed over when the U.S. national park system was created. But it’s becoming clear that it is possible to create large protected areas through nontraditional methods.

Consider American Prairie, a nonprofit that is working to stitch together public and tribal lands to create a Connecticut-sized protected area for grassland wildlife in Montana. Since 2004, American Prairie has made 37 land purchases and amassed a habitat base of 460,000 acres (about 720 square miles, or 1,865 square kilometers).

The American Prairie initiative is working to create a protected zone of prairie grassland the size of Connecticut by knitting together public and private lands where ranchers and others are still working.

Similarly, in Australia, nonprofits are making staggering progress in conserving land while government agencies struggle with funding cuts and bureaucratic hurdles. Today, Australia is second only to the U.S. in its amount of land managed privately for conservation.

Big ideas make room for smaller actions

Having worked to conserve wildlife in this region for over 20 years, I have seen firsthand that by setting a sweeping goal of connecting 3.2 million acres (5,000 square miles, or 13,000 square kilometers), American Prairie has reframed the scale at which conservation success is measured in the Great Plains. By raising the bar for land protection, they have made other conservation organizations seem more moderate and created new opportunities for those groups.

One leading beneficiary is The Nature Conservancy, which owns the 60,000-acre Matador Ranch within the American Prairie focal area. When the conservancy first purchased the property, local ranchers were skeptical. But that skepticism has turned to support because the conservancy isn’t trying to create a protected area.

Instead, it uses the ranch as a grassbank – a place where ranchers can graze cattle at a low cost, and in return, pledge to follow wildlife-friendly practices on their own land, such as altering fences to allow migratory pronghorn to slip underneath. Via the grassbank, ranchers are now using these wildlife conservation techniques on an additional 240,000 acres of private property.

Using smooth wire instead of barbed wire for prairie fences enables pronghorn to cross under them with less chance of injury.

Other moderate conservation organizations are also working with ranchers. For example, this year the Bezos Earth Fund has contributed heavily to the National Fish and Wildlife Foundation’s annual grants program, helping to make a record $US16 million available to reward ranchers for taking wildlife-friendly actions.

A collective model for achieving a large-scale protected area in the region has taken shape. American Prairie provides the vision and acts to link large tracts of protected land for restoring wildlife. Other organizations work with surrounding landowners to increase tolerance toward wildlife so those animals can move about more freely.

Instead of aiming to create a single polygon of protected land on a map, this new approach seeks to assemble a large protected area with diverse owners who all benefit from participating. Rather than excluding people, it integrates local communities to achieve large-scale conservation.

A global pathway to 30×30

This Montana example is not unique. In a recent study, colleagues and I found that when conservationists propose creating very large protected areas, they transform conservation discussions and draw in other organizations that together can achieve big results.

Many recent successes started with a single actor leading the charge. Perhaps the most notable example is the recently created Cook Islands Marine Park, also known as Marae Moana, which covers 735,000 square miles (1.9 million square kilometers) in the South Pacific. The reserve’s origin can be traced back to Kevin Iro, an outspoken former professional rugby player and member of the islands’ tourism board.

While some individual conservation organizations have found that this strategy works, global, national and local policymakers are not setting comparable large-scale targets as they discuss how to meet an ambitious worldwide goal of protecting 30% of the planet for wildlife by 2030. The 30×30 target was adopted by 190 countries at an international conference in 2022 on saving biodiversity.

Critics argue that large protected areas are too complicated to create and too expensive to maintain, or that they exclude local communities. However, new models show that there is a sustainable and inclusive way to move forward.

In my view, 30×30 policymakers should act boldly and include large protected area targets in current policies. Past experience shows that failing to do so will mean that future protected areas become smaller and smaller and ultimately fail to address Earth’s biodiversity crisis.The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The post Protecting wildlife starts with securing land for animals to roam appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The 10 most underrated national parks in the US https://www.popsci.com/environment/underrated-national-parks/ Thu, 27 Apr 2023 11:00:00 +0000 https://www.popsci.com/?p=536909
Red petrified wood scattered across the landscape at Petrified Forest National Park
Petrified Forest National Park in Arizona. Andrew V. Kearns/National Park Service

How many have you visited?

The post The 10 most underrated national parks in the US appeared first on Popular Science.

]]>
Red petrified wood scattered across the landscape at Petrified Forest National Park
Petrified Forest National Park in Arizona. Andrew V. Kearns/National Park Service

Ever worry that you will run out of places to explore in America? Lucky for you, there are 63 national parks and 424 national park sites across the country—it will take a long time to work your way through the 85 millions acres they encompass. And with additional sites being earmarked for conservation (West Virginia’s New River Gorge was just designated as a national park in 2021, for example), the list of destinations keeps growing and growing.

Remember, it takes some planning to visit the national parks, though the journey you make of it will be worthwhile. One way to optimize the experience is by targeting the lesser-known parks. Avoid the snaking lines at the Grand Canyon and take in the wrinkly sandstone at Capitol Reef. Skip the tortuous campsite-booking system at Acadia and sleep on the sands of Indiana Dunes. Smaller parks might mean fewer amenities and tour outfitters, but that’s where the real beauty of wilderness shines through. Let us know in the comments what your favorites and underrated choices are.

Voyageurs National Park, Minnesota

Voyageurs National Park in Minnesota is abundant with lakes and wetlands.
Voyageurs National Park in Northern Minnesota has been home to Native Americans, fur traders, homesteaders, miners, and fishermen. Today it’s a 218,054-acre national park with four large lakes and 26 smaller interior lakes. On clear nights, lucky visitors have the opportunity to see the Aurora Borealis, also known as the northern lights, from the park. Skiing and snowshoeing are popular activities in the winter, while summer campers can charter a tour boat. USGS

Guadalupe Mountains National Park, Texas

Guadalupe Peak in Guadalupe Mountains National Park is in Texas
Guadalupe Mountains is home to the four highest points in Texas and the bright-white Salt Basin. During the Pleistocene Epoch, this Salt Basin was covered by a shallow lake but today it’s dry most of the year. This photo captures one of the rare times when there’s water—this usually happens in the summer. While the Basin is covered in gypsum and salt, the nearby dunes consist of pale red quartz grains. National Park Service

North Cascades National Park, Washington

North Cascades National Park in Washington is known as the American Alps with purple wildflowers
There are more than 300 glaciers in North Cascades National Park. Known for its rugged beauty, this park—just three hours from Seattle, Washington—has earned the reputation of being the American Alps. With over 400 miles of trails, visitors can explore forested valleys, birdwatch, and keep an eye out for grizzly bears. National Park Service

Lassen Volcanic National Park, California

Lassen National Park in California is where you'll find boiling springs and steam vents.
The park’s Bumpass Hell Trail will lead to you boiling springs and steam vents. National Park Service

Capitol Reef National Park, Utah

The red canyons of Capitol Reef National Park in Utah.
When you visit Capitol Reef you can see canyons, sandstone structures, and ancient petroglyphs. National Park Service

Congaree National Park, South Carolina

Congaree National Park in South Carolina protects an ancient forest.
Here you’ll find the largest remaining section of old-growth bottomland forest in the United States. Paul Angelo/National Park Service

New River Gorge National Park and Preserve, West Virginia

A purple Catawba rhododendron blooming in New River Gorge National Park in West Virginia.
From 1,400 feet above the river at Grandview Main Overlook, visitors are rewarded with one of the most outstanding views in the park. On a clear day you can see directly into the heart of New River Gorge National Park and Preserve, including seven miles of the New River and its watershed. From Main Overlook visitors can also get a glimpse of some of the gorge’s unique cultural history. From here you see an active railway and the town of Quinnimont, where the first coal was shipped out of the gorge in 1873. Grandview is a great place to see the spectacular displays of Catawba rhododendrons that bloom here every spring. The purple Catawba rhododendrons bloom in mid-May, while the white great rhododendrons bloom in July. National Park Service

Indiana Dunes National Park, Indiana

Indiana Dunes National Park in Indiana is a refuge of sand dunes, wetlands, and woodlands. Canoes are welcome on the shores too.
While the Indiana Dunes maintain a legacy of modern scientific inquiry that began towards the end of the 19th century, this landscape had already been studied by Native Americans for thousands of years. Their vast knowledge of the region reveals an intimate past of research. Indiana Dunes National Park is one of nine parks that are within the federal government’s Great Lakes Inventory and Monitoring Network. National parks within the boundaries of Lake Michigan and Lake Superior are monitored and studied for wildlife and plant populations, changes in the landscape, and effects of pollution on the environment. Great Lakes Network scientists use the parks for science and use the science to make management decisions to help the parks. National Park Service

Haleakalā National Park, Maui, Hawaii

Haleakalā National Park in Hawaii is where you'll find a dormant volcano.
Haleakalā National Park holds more endangered species than any other US national park. National Park Service

Petrified Forest National Park, Arizona

Closeup of petrified wood in the Crystal Forest in Petrified Forest National Park in Arizona.
A slice of the Crystal Forest Trail in the Petrified Forest National Park. It was originally called First Forest as it was the first large accumulation of petrified wood reached from Adamana, Arizona. The petrified log segments continue to erode from the 216-million-year-old bed, which caps the exposures in the area, including Blue Mesa, Agate Bridge, and Crystal Forest. The historic access point built in the 1930s was closed in 1965 to reduce illegal petrified wood removal. Hallie Larsen/National Park Service

The post The 10 most underrated national parks in the US appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New AI-based tsunami warning software could help save lives https://www.popsci.com/technology/ai-tsunami-detection-system/ Wed, 26 Apr 2023 19:17:46 +0000 https://www.popsci.com/?p=537034
tsunami warning sign in Israel
New research aims to give people more warning time before a tsunami strikes. Deposit Photos

Researchers hope that new software could lead to tsunami alerts that are faster and more accurate.

The post New AI-based tsunami warning software could help save lives appeared first on Popular Science.

]]>
tsunami warning sign in Israel
New research aims to give people more warning time before a tsunami strikes. Deposit Photos

To mitigate the death and disaster brought by tsunamis, people on the coasts need the most time possible to evacuate. Hundred-foot waves traveling as fast as a car are forces of nature that cannot be stopped—the only approach is to get out of the way. To tackle this problem, researchers at Cardiff University in Wales have developed new software that can analyze real-time data from hydrophones, ocean buoys, and seismographs in seconds. The researchers hope that their system can be integrated into existing technology, saying that with it, monitoring centers could issue warnings faster and with more accuracy. 

Their research was published in Physics of Fluids on April 25. 

“Tsunamis can be highly destructive events causing huge loss of life and devastating coastal areas, resulting in significant social and economic impacts as whole infrastructures are wiped out,” said co-author Usama Kadri, a researcher and lecturer at Cardiff University, in a statement.

Tsunamis are a rare but constant threat, highlighting the need for a reliable warning system. The most infamous tsunami occurred on December 26, 2004, after a 9.1-magnitude earthquake struck off the coast of Indonesia. The tsunami inundated the coasts of more than a dozen countries over the seven hours it lasted, including India, Indonesia, Malaysia, Maldives, Myanmar, Sri Lanka, Seychelles, Thailand and Somalia. This was the deadliest and most devastating tsunami in recorded history, killing at least 225,000 people across the countries in its wake. 

Current warning systems utilize seismic waves generated by undersea earthquakes. Data from seismographs and buoys are then transmitted to control centers that can issue a tsunami warning, setting off sirens and other local warnings. Earthquakes of 7.5 magnitude or above can generate a tsunami, though not all undersea earthquakes do, causing an occasional false alarm. 

[Related: Tonga’s historic volcanic eruption could help predict when tsunamis strike land]

These existing tsunami monitors also verify an oncoming wave with ocean buoys that outline the coasts of continents. Tsunamis travel at an average speed of 500 miles per hour, the speed of a jet plane, in the open ocean. When approaching a coastline, they slow down to the speed of a car, from 30 to 50 miles per hour. After the buoys are triggered, they issue tsunami warnings, leaving little time for evacuation. By the time waves reach buoys, people have a few hours, at the most, to evacuate.

The new system uses two algorithms in tandem to assess tsunamis. An AI model assesses the earthquake’s magnitude and type, while an analytical model assesses the resulting tsunami’s size and direction.

Once Kadri and his colleagues’ software receives the necessary data, it can predict the tsunami’s source, size, and coasts of impact in about 17 seconds. 

The AI software can also differentiate between types of earthquakes and their likelihood of causing tsunamis, a common problem faced by current systems. Vertical earthquakes that raise or lower the ocean floor are much more likely to cause tsunamis, whereas those with a horizontal tectonic slip do not—though they can produce similar seismic activity, leading to false alarms. 

“So, knowing the slip type at the early stages of the assessment can reduce false alarms and complement and enhance the reliability of the warning systems through independent cross-validation,” said co-author Bernabe Gomez Perez, a researcher who currently works at the University of California, Los Angeles in a press release.

Over 80 percent of tsunamis are caused by earthquakes, but they can also be caused by landslides (often from earthquakes), volcanic eruptions, extreme weather, and much more rarely, meteorite impacts.

This new system can also predict tsunamis not generated by earthquakes by monitoring vertical motion of the water.

The researchers behind this work trained the program with historical data from over 200 earthquakes, using seismic waves to assess the quake’s epicenter and acoustic-gravity waves to determine the size and scale of tsunamis. Acoustic-gravity waves are sound waves that move through the ocean at much faster speeds than the ocean waves themselves, offering a faster method of prediction. 

Kadri says that the software is also user-friendly. Accessibility is a priority for Kadri and his colleague, Ali Abdolali at the National Oceanic and Atmospheric Administration (NOAA), as they continue to develop their software, which they have been jointly working on for the past decade.

By combining predictive software with current monitoring systems, the hope is that agencies could issue reliable alerts faster than ever before.

Kadri says that the system is far from perfect, but it is ready for integration and real-world testing. One warning center in Europe has already agreed to host the software in a trial period, and researchers are in communication with UNESCO’s Intergovernmental Oceanographic Commission.

“We want to integrate all the efforts together for something which can allow global protection,” he says. 

The post New AI-based tsunami warning software could help save lives appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What prehistoric poop reveals about extinct giant animals https://www.popsci.com/environment/prehistoric-poop-fungi-megafauna-biodiversity/ Wed, 26 Apr 2023 16:00:00 +0000 https://www.popsci.com/?p=536815
A mushroom called coprophilous grows in woods.
Spores of coprophilous fungi pass through the guts of these megafauna during their life cycle and offer clues to their past lives. Deposit Photos

Spores from a fungi found in megafauna poop can tell us when enormous creatures went extinct.

The post What prehistoric poop reveals about extinct giant animals appeared first on Popular Science.

]]>
A mushroom called coprophilous grows in woods.
Spores of coprophilous fungi pass through the guts of these megafauna during their life cycle and offer clues to their past lives. Deposit Photos

Looking at poop can tell us a lot. Poop offers a window into all sorts of hidden worlds: bird microbiomes, clam habitats, recovering coral forests, and more. 

Excrement can also tell us about how and when animals went extinct thousands of years ago. A study published April 26 in the journal Quaternary Research looked at the fungal spores in the dung of the large animals, such as 20-foot-tall ground sloths and 1,000 pound armadillo-looking animals called armored glyptodonts, that roamed the Colombian Andes in South America during the Pleistocene. 

[Related: Ancient poop proves that humans have always loved beer and cheese.]

They found that the animals became extinct in not one, but two waves. The megafauna in this study first became locally extinct at Pantano de Monquentiva, a valley in Colombia surrounded by hills and near a bog, about 23,000 years ago and then again in the same area about 11,000 years ago. 

Spores of coprophilous fungi pass through the guts of these megafauna during their life cycle. The presence of these spores in sediment samples provides evidence that these long-extinct animals lived in a certain place and time. 

The team used samples found in a peat bog in Pantano de Monquentiva, about 37 miles from Bogota, Colombia. The findings offer a window back in time to better understand how the disappearance of large animals could transform ecosystems like they did all those millennia ago. 

“We know that large animals such as elephants play a vital role in regulating ecosystems, for example by eating and trampling vegetation,” Dunia H. Urrego, co-author and University of Exeter biologist and geographer, said in a statement. “By analyzing samples of fungal spores, as well as pollen and charcoal, we were able to track the extinction of large animals, and the consequences of this extinction for plant abundance and fire activity.

The team found that the Monquentiva ecosystem changed dramatically when the megafauna disappeared, with different plant species thriving and increased wildfires. The analysis of the fungal spores didn’t tell exactly which large animals were present, but it’s possible that the animals were either the giant sloth and armadillo, or even macrauchenids and toxodonts, two peculiar extinct animals reminiscent of today’s camels and rhinoceroses.

[Related: Our bravest ancestors may have hunted giant sloths.]

The study also found that when all of this plentiful megafauna disappeared, it had major effects on the ecosystem. Roughly 5,000 years after their disappearance, the megafauna began to live again. This reprieve was short lived, and they all went extinct in a second wave of extinction 11,000 years ago. While the team does not know the direct causes of this, a number of factors like plant extinctions, climate changes, increased hunting by humans, and even a meteorite spike are potential causes.

“After the megafauna vanished, plant species at Monquentiva transitioned, with more woody and palatable plants (those favored by grazing animals), and the loss of plants that depend on seed dispersal by animals,” co-author and geographer also at the University of Exeter Felix Pym said in a statement.  “Wildfires became more common after the megafauna extinctions – presumably because flammable plants were no longer being eaten or trampled upon. 

With the planet’s current biodiversity crisis in mind, the study points to the importance of conserving local plants and watching fire activity before the value humans gain from nature completely disappears. 

The post What prehistoric poop reveals about extinct giant animals appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Deep-sea mining has murky aftereffects https://www.popsci.com/environment/deep-sea-mining-ocean-impact-sediment/ Mon, 24 Apr 2023 01:00:00 +0000 https://www.popsci.com/?p=535885
“The ocean is an interconnected whole,” says Jeff Drazen, a deep-sea ecologist at the University of Hawai‘i at Mānoa. “We can’t think of it as discrete shallow-water and deep-sea systems. What affects one is likely to affect the other.”
“The ocean is an interconnected whole,” says Jeff Drazen, a deep-sea ecologist at the University of Hawai‘i at Mānoa. “We can’t think of it as discrete shallow-water and deep-sea systems. What affects one is likely to affect the other.”. DepositPhotos

Mining promises to kick up a bunch of seafloor-smothering sediment. The question is, how much?

The post Deep-sea mining has murky aftereffects appeared first on Popular Science.

]]>
“The ocean is an interconnected whole,” says Jeff Drazen, a deep-sea ecologist at the University of Hawai‘i at Mānoa. “We can’t think of it as discrete shallow-water and deep-sea systems. What affects one is likely to affect the other.”
“The ocean is an interconnected whole,” says Jeff Drazen, a deep-sea ecologist at the University of Hawai‘i at Mānoa. “We can’t think of it as discrete shallow-water and deep-sea systems. What affects one is likely to affect the other.”. DepositPhotos

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

Industrial mining in the deep ocean is on the horizon. Despite several countries including Germany, France, Chile, and Canada calling for a pause on the field’s development, the International Seabed Authority (ISA), the organization tasked with both regulating and permitting deep-sea mining efforts, is nearing the deadline to finalize rules for how companies will operate. Companies, meanwhile, are busy testing the capabilities of their machines—equipment designed to collect polymetallic nodules, rocks rich in cobalt, nickel, copper, and manganese that litter some parts of the seafloor.

Top of mind for many scientists and politicians is what ramifications deep-sea mining might have on fragile marine ecosystems, including those far from the mining site. At the heart of the debate is concern about the clouds of sediment that can be kicked up by mining equipment.

“Imagine a car driving on a dusty road, and the plume of dust that balloons behind the car,” says Henko de Stigter, a marine geologist at the Royal Netherlands Institute for Sea Research. “This is how sediment plumes will form in the seabed.”

Scientists estimate that each full-scale deep-sea mining operation could produce up to 500 million cubic meters of discharge over a 30-year period. That’s roughly 1,000 six-meter-long shipping containers full of sediment being discharged into the deep every day, spawning from a field of mining sites spread out over an area roughly the size of Spain, Portugal, France, Belgium, and Germany.

These sediment plumes threaten to smother life on the ocean floor and choke midwater ecosystems, sending ripples throughout marine ecosystems affecting everything from deep-sea filter-feeders to commercially important species like tuna. Yet discussions of the plumes’ potential consequences are clouded by a great deal of uncertainty over how far they will spread and how they will affect marine life.

To clarify just how murky deep-sea mining will make the water, scientists have been tagging along as companies conduct tests.

Two years ago, Global Sea Mineral Resources, a Belgian company, conducted the first trials of its nodule-collecting vehicles. Scientists working with the company found that more than 90 percent of the sediment plume settled out on the seafloor, while the rest lingered within two meters of the seabed near the mined area. Other studies from experiments in the central Pacific Ocean found that the sediment plumes reached as far as 300 meters away from the disturbed site, though the thickest deposition was within 100 meters. This is a shorter spread than earlier models, which predicted deep-sea mining plumes could spread up to five kilometers from the mining site.

Beyond the sediment kicked up by submersibles moving along the seafloor, deep-sea mining can muddy the water in another way.

As polymetallic nodules are lifted to the surface, the waste water that’s sucked up along with the nodules is discharged back into the ocean. Doug McCauley, a marine scientist at the University of California, Santa Barbara, says this could potentially create “underwater dust storms” in upper layers of the water column. Over the course of a 20-year mining operation, this sediment could be carried by ocean currents up to 1,000 kilometers before sinking to the seabed.

Some particularly fine-grained particles could remain suspended in the water column, traveling long distances with the potential to affect a wide range of marine animals. According to another recent study, it’s these tiny particles that are the most harmful to filter-feeders like the Mediterranean mussel.

To avoid these consequences on midwater ecosystems, at least, scientists are advising would-be deep-sea miners to discharge waste water at the bottom of the ocean where mining has already created a disturbance. This would be a departure from the ISA’s messaging, which is to not specify at what depth waste water should be released.

For its own trials last December, the Metals Company (TMC), a Canadian company, says it worked hard to minimize the amount of sediment discharged in the waste water it released at a depth of 1,200 meters.

“We’ve optimized our system to leave as much sediment on the seabed as possible,” says Michael Clarke, environmental manager at TMC. Clarke says he’s skeptical of previously published research projecting vast sediment plumes. “When we were trying to measure the [midwater] plume a few hundred meters away from the outlet, we couldn’t even find the plume because it diluted so much.”

Clarke says the company is currently analyzing both baseline and impact data for its test mining, including looking at how far small particles spread and how long they remain suspended. The results will be submitted to the ISA as part of an environmental impact assessment.

As deep-sea mining inches closer and scientists ramp up their research efforts, it’s important to keep one thing clear: “I can tell you that we’re not going to discover that deep-sea mining is good for marine ecosystems,” McCauley says. “The question is, How bad will it be?”

This article first appeared in Hakai Magazine and is republished here with permission.

The post Deep-sea mining has murky aftereffects appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A new robotic seed can wriggle into soil to harvest climate data https://www.popsci.com/technology/seed-robot-soil/ Thu, 20 Apr 2023 20:00:00 +0000 https://www.popsci.com/?p=535681
When tested in a soil sample, the robot was able to shimmy about, adapt its shape to cracks, and burrow into holes in the ground much like the natural seed.
When tested in a soil sample, the robot was able to shimmy about, adapt its shape to cracks, and burrow into holes in the ground much like the natural seed. Unsplash

The nature-inspired device could help improve our soddy communication with sod.

The post A new robotic seed can wriggle into soil to harvest climate data appeared first on Popular Science.

]]>
When tested in a soil sample, the robot was able to shimmy about, adapt its shape to cracks, and burrow into holes in the ground much like the natural seed.
When tested in a soil sample, the robot was able to shimmy about, adapt its shape to cracks, and burrow into holes in the ground much like the natural seed. Unsplash

Soil is one of the most crucial, if not underrated, elements of daily life—it’s essential for growing the food and resources we rely on, combats drought, protects against flooding, and can sequester carbon dioxide for years to come. But, the dirt beneath our feet is constantly under threat due to rising temperatures and biodiversity loss thanks to climate change. And despite how simple we may think soil is, it’s pretty hard to know what’s really going on deep in the ground from the surface.

Scientists in Italy, however, think they may have a robotic solution—a seed-inspired robot. Scientists at the Bioinspired Soft Robotics (BSR) Lab, a part of the Istituto Italiano di Tecnologia (IIT-Italian Institute of Technology) in Genoa, have developed the first 4D printed seed-inspired soft robot, which they claim can help act as sensors for monitoring pollutants, CO2 levels, temperature and humidity in soil. They published their findings earlier this year in Advanced Science. The research is part of the EU-funded I-Seed project aimed at making robots that can detect environmental changes in air and soil. 

What they’ve got here is an artificial seed inspired by the structure of a South African geranium, or the Pelargonium appendiculatum. The seeds of the tuberous, hairy-leafed plant have the ability to change shape in response to how humid their environment is. When the time comes for the seeds to leave the plant, they detach and can move independently to “penetrate” soil fractures, according to the study. This almost looks like crawling and burning action, which is due its helical shape changing according to changes in the environment. In a way. The curly seeds can find a home for themselves simply by expanding and shrinking due to changes in water content of the air.

[Related: This heat-seeking robot looks and moves like a vine.]

The team at IIT-BSR mimicked these seeds by combining 3D printing and electrospinning, using materials that also absorb and expand when exposed to humidity. Using fused deposition modeling, the authors printed a substrate layer of polycaprolactone, a biodegradable thermoplastic polyester activated using oxygen plasma to increase water-attracting abilities. Next, they added electrospun hygroscopic fibers made of a polyethylene oxide shell and a cellulose nanocrystal core. 

When tested in a soil sample, the robot was able to shimmy about, adapt its shape to cracks, and burrow into holes in the ground much like the natural seed. Not to mention, it was capable of lifting about 100 times its own weight. First author Luca Cecchini, a PhD student at IIT, said in a statement that the biodegradable and energy-autonomous robots could be used as “wireless, battery-free tools for surface soil exploration and monitoring.”

Land photo
The first I-Seed created at IIT is inspired by the seed structure of a South African geranium, the Pelargonium appendiculatum. Credit: IIT-Istituto Italiano di Tecnologia

“With this latest research,” Barbara Mazzolai, associate director for robotics of the IIT and coordinator of the I-Seed Project, said in the statement, “we have further proved that it is possible to create innovative solutions that not only have the objective of monitoring the well-being of our planet, but that do so without altering it.”

The post A new robotic seed can wriggle into soil to harvest climate data appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Seals snooze during 20-minute ‘sleeping dives’ to avoid predators https://www.popsci.com/environment/seals-sleep-swimming/ Thu, 20 Apr 2023 18:00:00 +0000 https://www.popsci.com/?p=535570
Sleeping elephant seals on a California beach
On the shore, elephant seals sleep for about 10 hours a day. But while at sea, they sleep just two hours daily. Jessica Kendall-Bar

A new brainwave study reveals elephant seals spiral downward while fast asleep.

The post Seals snooze during 20-minute ‘sleeping dives’ to avoid predators appeared first on Popular Science.

]]>
Sleeping elephant seals on a California beach
On the shore, elephant seals sleep for about 10 hours a day. But while at sea, they sleep just two hours daily. Jessica Kendall-Bar

Northern elephant seals are challenging the world record for the mammal that sleeps the fewest hours a day. The current record holder is the African elephant, who rests a measly two hours daily. Now scientists report that elephant seals also sleep an average of two hours a day when they’re out at sea and do this by splitting their slumber into a series of nap-like “sleeping dives.” 

These findings were published today in the journal Science

Elephant seals divide their time between land and sea, though it’s unequal. They spend an average of seven months out of the year in the open ocean and only resurface to breed, molt, and rest. Because they spend so much time in open waters, scientists figured these marine mammals must have developed some way of getting the sleep they need while avoiding detection from predators like the orca whales and great white sharks. But exactly how they do this has been poorly understood.

[Related: Take the best naps, with science]

One challenge in understanding the sleep behavior of elephant seals is finding a device that’s both waterproof and can handle deep-sea pressure. To overcome this, the study team created a flexible head cap that can respond to seals’ twisting and flexing motions. It’s also made up of a synthetic rubber called neoprene, the same material found in wetsuits. The scientists used this cap to monitor the seals’ brain activity, heart rate, and three-dimensional spatial movement.

Scientists outfitted 13 wild seals with the cap. Five were kept in a lab, while the other eight could freely roam around Monterey Bay, California. The EEG recordings collected from the head cap represented brain activity during different sleep stages. 

“We can take the data and use it to recreate what the sleeping dives look like, and also what’s happening within the animal brain, how fast its heart is beating, etcetera,” says lead study author Jessica Kendall-Bar, a Scripps postdoc scholar at the University of California, San Diego.

How do seals sleep in the ocean?

Elephant seals sleeping in the ocean shallows
Sleeping 2-month-old northern elephant seals in the shallow lagoon at Año Nuevo State Park, California. Jessica Kendall-Bar

The collected data indicates elephant seals sleep about two hours a day while at sea, though not all at once. When it was time to get a little shut-eye, seals dove hundreds of meters below the surface—the maximum depth was about 1,200 feet—where they would take quick naps lasting less than 20 minutes. 

Kendall-Bar says this “degree of flexibility and sleep duration has really only been demonstrated in birds and is pretty much unprecedented in mammals.”

Dive naps likely evolved as a way for seals to avoid getting attacked since their natural predators lurk near the surface, explains Kendall-Bar. They are also more vulnerable than other marine mammals when resting because they undergo bilateral sleep. This means both halves of the elephant seal’s brain rest when they sleep. Human beings also experience bilateral sleep. 

Meanwhile, fur seals and sea lions experience unihemispheric sleep—one brain hemisphere rests while the other stays awake and monitors for predators.

Different stages of underwater sleep

The study data suggests seals go through one complete sleep cycle during each nap-like “sleeping dive.” When these brief sleep cycles end, the seals return to the surface. This process allows them to rest at depths with lower predation risk while staying vigilant in more dangerous waters. 

Elephant seal sleep spiral in the ocean in a blue and purple diagram
When seals go into REM sleep during dives, sleep paralysis causes them to drift downwards in a “sleep spiral,” as seen in this diagram. Jessica Kendall-Bar

During nap dives, the seals entered slow-wave sleep while maintaining an upright posture. They then turned upside down while their sleep cycle transitioned from slow-wave sleep to rapid eye movement (REM) sleep. 

“The sleep state of the animal is actually reflected in its movement through the water,” explains Kendall-Bar. 

Once the cycle was complete, the seals immediately woke up and returned to the surface to find food.

[Related: Pendulums under ocean waves could prevent beach erosion]

Since muscle paralysis from REM sleep leaves seals exposed and defenseless, they took the shortest naps possible and compensated for the lack of sleep after reaching land again. As a result, the seals slept five times longer ashore than they did in the water. Some seals even slept up to 14 hours a day on land.

“What really stood out for me is the fine-scale analysis the researchers did to identify the different sleep states and how they were able to translate this analysis to estimate sleep patterns in seals at sea,” says Cassondra Williams, a comparative physiologist at the National Marine Mammal Foundation who was not involved in the study. “This will be an important tool for future behavior studies of pinnipeds freely diving at sea.”

Most diving naps took place just near the shore. While northern elephant seals are not currently endangered (in the 1800s, they were almost hunted to extinction), Kendall-Bar and her team are concerned that shipping traffic and traps on the seafloor may be disturbing their habitats. Understanding when and where seals slumber could help conservation efforts and ensure seals get all two hours of their beauty sleep.

The post Seals snooze during 20-minute ‘sleeping dives’ to avoid predators appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Parrots are deeply intelligent. But do we understand their emotions? https://www.popsci.com/environment/captive-parrot-ptsd/ Thu, 20 Apr 2023 10:00:00 +0000 https://www.popsci.com/?p=535420
White Moluccan cockatoo on a branch turning toward a person's hand. Reddish flames are behind the bird to symbolize past trauma. Illustrated.
Maybe Harpo found comfort by repeating the words that were once used against him. Isabel Seliger for Popular Science

The profound story of Harpo the cockatoo gives us insights on trauma among captive birds.

The post Parrots are deeply intelligent. But do we understand their emotions? appeared first on Popular Science.

]]>
White Moluccan cockatoo on a branch turning toward a person's hand. Reddish flames are behind the bird to symbolize past trauma. Illustrated.
Maybe Harpo found comfort by repeating the words that were once used against him. Isabel Seliger for Popular Science

How well do you know your pets? Pet Psychic takes some of the musings you’ve had about your BFFs (beast friends forever) and connects them to hard research and results from modern science.

ONE AFTERNOON several years ago, a Moluccan cockatoo named Harpo arrived at Midwest Avian Adoption & Rescue Services in St. Paul, Minnesota. As Galiena Cimperman sat quietly with him and scratched his head, the bird started to talk.

This was perfectly normal. Harpo, like others of his species and the parrot family to which it belongs, was a very vocal creature and gifted mimic. Cimperman, the sanctuary’s executive director, was accustomed to him keeping up a semicoherent monologue of under-his-breath babble. But a long while after their first meeting, he shared something unexpected.

“I hate this bird,” Harpo said, loudly and clearly. He repeated it twice more. “I hate this bird. I hate this bird.”

Harpo had certainly heard that insult before, likely in unpleasant circumstances. But what did the cockatoo mean by it? According to Cimperman, the words didn’t have the same significance for him that they would for us; Harpo was repeating the sounds, not using them as language. But that doesn’t mean the outburst was insignificant.

Cimperman believes the phrase reflected traumas the cockatoo experienced earlier in life and that uttering them was part of his recovery. “I’m hesitant to say, because I don’t have any scientific backing on this,” she explains, “but I think he was probably working through stuff.”

Her diagnosis of Harpo—and many other residents of MAARS, one of 100 or so sanctuaries in the US that provide lifetime homes to abused and abandoned parrots—indeed comes without a seal of scientific approval. Although there’s plenty of research on parrot memory, problem-solving, and communication (the cognitive sophistication of some species is likened to that of human children), the birds’ emotions are largely unstudied.

That makes the relationship between parrots and people all the more difficult. The birds’ intelligence, physiology, and social nature often makes it difficult for them to flourish in captivity—yet there are more than 50 million parrots in households and zoos worldwide. Many are ultimately dumped at overwhelmed rescue operations, where volunteers like Cimperman have to piece together their pasts to help them find solace in the present.

As for whether the animals’ suffering can lead to psychological trauma—defined as an ongoing emotional response to an intensely distressing event—there’s even less research on that than on their feelings. But between their emotions and their excellent long-term memories, they do possess the cognitive capacities necessary to experience extended trauma.

One of the only scientific papers about parrot trauma, in fact, emerged from a collaboration between MAARS caretakers and Gay Bradshaw, the psychologist and ecologist best known for identifying PTSD in orphaned elephants who witnessed their parents and elders being killed. Presented more than a decade ago at a conference of avian veterinarians, the paper describes how parrots at the sanctuary frequently meet the criteria for the disorder.

What Bradshaw learned is that the birds undergo intensely distressing experiences, beginning in most cases at birth. Unlike parrots in the wild, whose parents provide close, attentive care from hatching through fledging, commercially bred individuals often start life in isolation. They receive little attention except for intermittent tube feeding.

“I really think their whole lives are, in some form or another, traumatic,” Cimperman says. “The way people raise them is completely absent of everything they should have.” In a review of standard commercial breeding methods, bird vet Michelle Curtis Velasco likened them to the infamous Romanian orphanages where, in the near absence of human contact, infants went on to develop severe behavioral disorders.

At parrot sanctuaries, it’s important that the birds feel control over their own lives.

Then, at an age when their wild counterparts meet other young flock members while continuing to receive parental instruction, fledgling parrots enter a human home. They have evolved to live in large groups, but as pets, just one or a few often-absent people become their entire social world. These situations are intrinsically fraught; even well-meaning guardians may ignore or punish their parrots after tiring of unwittingly powerful bites and earsplitting cries for company. Sometimes keepers are not so well-meaning, and the situation devolves into full-blown abuse.

The birds are ill-equipped to cope, says Cimperman, and stress is magnified by helplessness and an inability to escape. Many parrots, especially the larger ones, either have their wings clipped to prevent flight or never learn to fly at all; they lack the sense of security that mobility provides.

Little wonder that some parrots arrive at MAARS with symptoms of severe psychological disturbance: tics like picking their feathers out and even wounding themselves, extreme aggression, hypersensitivity to everyday noises, repetitive movements, incessant screaming, constant agitation, catatonic unresponsiveness, and so on. In extreme cases, parrots have stayed in their cages for years, avoiding eye contact and trembling when humans approach.

When seen in people, those behaviors raise concerns about PTSD. “I know this hasn’t been borne out scientifically to the degree that it should be, but I don’t know what else it adds up to,” Cimperman says. So MAARS adapts insights on human PTSD into its treatment regime. New arrivals are initially kept separate from the flock; as they begin to acclimatize, grooming, eating, and showing curiosity about their surroundings, caretakers work with them to develop a sense of trust in humans.

It’s important that the birds feel control over their own lives, says Cimperman. “So much of a parrot’s life in captivity is without choice,” she says. “We try to give everyone a sense of free agency as much as possible, closer to what they would have in the wild.” Later they may be exposed to reminders of past trauma—the sight of a garbage bag, for example, for a bird delivered to the sanctuary inside one—as they learn to regulate their feelings. The process may take months or even years.

In Harpo’s case, the details of his early life are murky. He had one guardian before arriving at a sanctuary in Texas; there Harpo killed several birds and left volunteers with wounds requiring medical treatment, at which point MAARS took him in. “We couldn’t have him out for more than five minutes. He would just kind of implode and start flying at your face or attacking anything he could get his beak on,” Cimperman recalls.

By the time Harpo said, “I hate this bird,” she had worked with him for three years. He still had episodes when “he would just kind of blank out and kind of go into attack mode,” but he was improving. He felt safe around Cimperman, and she saw that utterance—delivered with the pinned-back feathers and slit-eyed glare that signify intensely negative feelings—as part of the process. To her, it signified a mental reenactment of his past. “I think they store a lot of stuff that’s happened to them. And to be able to move forward, there has to be some getting out of stuff,” she says.

Erin Colbert-White, a comparative psychologist at the University of Puget Sound in Washington who has studied how African grey parrots use words, says she’s open to the possibility that parrots experience PTSD. She cautions, however, that Harpo’s invective is difficult to parse as a recollection of his trauma because we don’t know the context in which he first heard the disparaging phrase. “It’s such a complex conclusion to draw that I would want to somehow be able to study it systematically. I’m not saying it’s not true. I would just have more questions. The scientist in me says, ‘Proceed with caution.’”

Colbert-White also warns that the expectation that another species will “experience psychological disorders in ways that humans do is a big assumption.” Rigorous, without-a-doubt scientific evidence may be unobtainable, though; it would require inflicting trauma on captive parrots in controlled conditions. “There’s no way to ethically reproduce these sorts of situations,” Colbert-White says.

Even granting that uncertainty, just the possibility that parrots experience psychological effects that resemble humans’ adds to the urgency of protecting them—not just in captivity, notes Cimperman, but also in the wild. Half of all parrot species are declining, and one-quarter are threatened with extinction, yet they receive relatively little conservation attention. Thriving populations are frequently persecuted for the wildlife trade or in the name of “pest management.”

By the end of Harpo’s life in 2021, nine years after his arrival at MAARS, he was one of the friendliest feathered guests there. He ran to greet people and was positively joyful. “I think who Harpo was and who he ended up being were completely different birds,” Cimperman says. “He was literally unrecognizable.” And whatever he’d meant when he said “I hate this bird,” he had stopped saying it.

We hope you enjoyed Brandon Keim’s column, Pet Psychic. Check back on PopSci+ in June for the next article.

The post Parrots are deeply intelligent. But do we understand their emotions? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Turf wars between whales and crabbers have increased due to climate change https://www.popsci.com/environment/whales-crabbers-climate-change/ Thu, 20 Apr 2023 01:00:00 +0000 https://www.popsci.com/?p=535215
As ocean conditions change, Dungeness crab fishers are finding themselves in conflict with whales more often.
As ocean conditions change, Dungeness crab fishers are finding themselves in conflict with whales more often. DepositPhotos

As climate change causes more marine heatwaves, finding space for both is getting even more difficult.

The post Turf wars between whales and crabbers have increased due to climate change appeared first on Popular Science.

]]>
As ocean conditions change, Dungeness crab fishers are finding themselves in conflict with whales more often.
As ocean conditions change, Dungeness crab fishers are finding themselves in conflict with whales more often. DepositPhotos

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

In Dick Ogg’s 25 years of commercial fishing, he’s had a few close encounters with whales—mostly while pulling Dungeness crab pots off the ocean floor. “I’ve had whales right next to me,” within about five meters, says Ogg. “They follow me, they watch, they’re curious. And then they go on about their business.”

Ogg is fortunate his interactions have been so leisurely. For nearly a decade, California’s whales and crabbers have been locked in a persistent struggle. From 1985 to 2014, the National Oceanic and Atmospheric Administration (NOAA) reported an average of 10 whales were entangled in fishing gear each year along the west coast of the United States. But between 2015 and 2017, that number jumped to 47 entanglements per year. Since 2015, most of the identifiable gear found on entangled whales has been from crab pots. For crabbers, efforts to protect whales from entanglement often hit their bottom line.

The Dungeness crab fishery is one of California’s largest and most lucrative; until recently, it was considered one of the most sustainable fisheries in the state. In recent years, managers have sought a balance between protecting whales and ensuring crabbers’ livelihoods. But as climate change transforms the northeast Pacific and whales are increasingly at risk of being entangled in crabbers’ lines, that delicate balance is beginning to unravel.

The 2015 crabbing season was a catastrophe for both crabbers and whales. A marine heatwave nurtured a bloom of toxic algae that pushed anchovies close to shore, and the whales followed. That year, NOAA recorded 48 entangled whales along the US west coast—nearly five times the historical average. The algae also rendered the crabs inedible, and the California Department of Fish and Wildlife (CDFW) delayed the start of the fishing season by several months. The federal government declared the failed season a fishery disaster.

In 2017, the environmental nonprofit Center for Biological Diversity sued the CDFW over the spate of entanglements, prompting the department to set up a rapid risk assessment and mitigation program that closes portions of the Dungeness crab fishery when whales are nearby. The new approach has decreased entanglements, but it’s come at a high price for commercial fishers.

The CDFW has a handful of other tools they can use to protect whales, such as shortening the crabbing season and limiting the number of traps crabbers can drop. But according to a recent study, the only measure that could have effectively protected whales during the heatwave—shortening the crabbing season—is the one that would have hampered crabbers the most. And even then, these strong restrictions would have only reduced entanglements by around 50 percent.

If a similar marine heatwave hits again, entanglements could spike, too, says Jameal Samhouri, a NOAA ecologist and author of the paper. “It’s going to be really hard to resolve these trade-offs,” he says. “There may be some hard choices to make between whether we as a society want to push forward conservation matters or allow the fishery.”

Every year since the CDFW set up its mitigation program, the fishery has faced closures. Since 2015, the crabbing season has only opened on time once. Though the heatwave is gone, a boom of anchovy has kept whales close to shore.

For Ogg, the most difficult part of the season is waiting to go fish and not having any income. “It’s been really, really tough for a lot of guys,” he says. Another recent study calculates that in 2019 and 2020, whale-related delays cost California Dungeness fishers US $24-million—about the same as they lost during the heatwave in 2015.

Smaller boats, the study showed, were most severely impacted by the closures. It’s a trend Melissa Mahoney, executive director of Monterey Bay Fisheries Trust, has seen firsthand. While a large boat might set hundreds of crab pots in a day, smaller vessels can’t make up for a shortened season. “I just don’t know how long a lot of these fishermen can survive,” Mahoney says.

With climate change, marine heatwaves are now 20 times more frequent than they were in preindustrial times. As the Earth grows warmer, heatwaves that would have occurred every 100 years or so could happen once a decade or even once a year. In this hotter world, balancing the needs of both crabbers and whales will only grow more difficult.

This article first appeared in Hakai Magazine and is republished here with permission.

The post Turf wars between whales and crabbers have increased due to climate change appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The UN’s first high seas treaty could help dwindling Pacific salmon https://www.popsci.com/environment/un-high-seas-treaty-salmon/ Wed, 19 Apr 2023 01:00:00 +0000 https://www.popsci.com/?p=534867
Salmon fishing in international waters has been banned since the 1990s, so future protected areas will not reduce fishing.
Salmon fishing in international waters has been banned since the 1990s, so future protected areas will not reduce fishing. Getty Images

In March, conservationists worldwide celebrated the historic agreement, which governs the ocean waters where salmon spend most of their lives.

The post The UN’s first high seas treaty could help dwindling Pacific salmon appeared first on Popular Science.

]]>
Salmon fishing in international waters has been banned since the 1990s, so future protected areas will not reduce fishing.
Salmon fishing in international waters has been banned since the 1990s, so future protected areas will not reduce fishing. Getty Images

This article was originally featured on High Country News.

The high seas — the ocean waters that begin 230 miles offshore — cover 43% of the planet’s surface and are home to as many as 10 million species, yet remain one of the least understood places on Earth. Among the region’s many mysteries are how Pacific salmon, one of the West’s most beloved and economically important fish, spend the majority of their lives — and why many populations are plummeting. Combined with how little we know about what climate change is doing out there, such questions make the area an international research and conservation priority.

These sprawling waters, though, are a mostly lawless zone, beyond the reaches of any national authority and governable only by international consensus and treaties. They face tremendous challenges that no nation can address alone: Climate change is causing marine heat waves and acidification, while overfishing and pollution are crippling ecosystems, even as pressure grows from companies and nations eager to drill and mine the ocean depths. In early March, negotiators representing nearly 200 nations came to a historic agreement aimed at protecting the ocean’s creatures and ecosystems. When the new United Nations High Seas Treaty was announced, marine scientists and conservationists around the globe rejoiced.

But what will the treaty actually mean for conservation in a region about which humanity knows less than the moon? When it comes to Pacific salmon, will the new treaty’s tools — and the international symbolism and momentum involved in agreeing to them — aid efforts to manage and protect them? Do the provisions go far enough? Here’s what the experts say.

The treaty’s protective tools may not be what salmon need

The treaty’s top provision establishes a road map for creating marine protected areas (MPAs) in international waters. Like national parks for the ocean, MPAs are zones that typically limit fishing or other activities to preserve ecosystems and species. When adequately enforced, they are widely considered to be a powerful tool for ocean and coastal conservation. They are also seen as key to reaching the U.N.’s goal to protect 30% of the planet’s oceans by 2030 — a goal the world is woefully behind on, with just 3% to 8% currently protected.

But when it comes to Pacific salmon, it is unclear whether MPAs can do anything at all. Salmon fishing in international waters has been banned since the 1990s, so future MPAs there will not reduce fishing. And while boosting enforcement of fishing bans may benefit other species, many believe illegal salmon fishing on the high seas is extremely low.

Still, some salmon experts believe that high seas marine preserves could provide indirect protection: By limiting other fishing, they could prevent salmon from being caught accidentally. They might also help preserve important marine food webs, though such ecosystems are vast, mobile and hard to monitor.

Fish photo
Marine Protected Areas (MPAs) in the United States. NOAA

“If salmon used those (protected areas) as part of their migration and ocean habitat, then, yes, it could be beneficial,” said Brian Riddell, retired CEO and current science advisor to the Canadian nonprofit Pacific Salmon Foundation. “But to associate changes in marine survival to (an MPA), I think would be very, very difficult.”

MPAs also don’t address climate change or the marine heat waves that many researchers believe are a key factor in recent salmon declines. Matt Sloat, science director at the Oregon-based Wild Salmon Center, said that limiting global emissions would do more to protect salmon.

Although much remains unknown, recent research suggests that salmon ranges in the ocean are shifting or shrinking because of temperature changes. Salmon are also getting smaller, suggesting there may be more competition for fewer resources. “And then (hatcheries) are putting billions more hungry mouths into that smaller area,” Sloat said, referring to the sometimes-controversial state, federal and tribal hatcheries in the U.S. and other countries that raise and release quotas of juvenile salmon each year to maintain local fisheries. He believes that improving international coordination of the scale of those releases, rather than governing remote ocean habitats, might also improve salmon survival in the ocean.

It may boost collaboration and high seas research

Another section of the treaty bolsters collaborative research in international waters. Although the treaty’s language is directed more at support for developing nations — to ensure that new knowledge reflects the priorities of more than just the wealthiest coastal nations — salmon researchers hope that any overall increase in funding and interest in high seas research could help solve the mystery of what actually happens to salmon there.

While much is known about the environmental factors affecting salmon in their coastal and riverine habitats, scientists call the open ocean a “black box” into which salmon disappear for years. “We don’t even know where our salmon are,” said Laurie Weitkamp, a research biologist at the National Oceanic and Atmospheric Administration. In 2022, seeking answers, she led an expedition that was part of the largest-ever high seas salmon research effort in the North Pacific, during which five vessels and more than 60 international scientists surveyed 2.5 million square kilometers (nearly 1 million square miles) in the Gulf of Alaska.

Fish photo
Different populations of Chinook salmon follow different migratory routes in the ocean, exposing them to different conditions affecting their survival. NOAA Climate.gov image adapted from NOAA Fisheries data. NOAA

The open ocean has always been a bottleneck for salmon survival; Weitkamp said that, even historically, “95% of the salmon that enter the ocean never come back.” Once, those numbers were predictable based on coastal and river conditions. Now, she said, scientists’ guesses are often wildly wrong. All known conditions will point to a good return, Weitkamp said, “And then it’s just like, where are they? What happened?”

Researchers have been trying to understand what they’re missing in salmon’s ocean habitats, but work on the high seas is extremely expensive: Expeditions cost tens of thousands of dollars a day, but can collect only small amounts of data because salmon are widely dispersed and hard to find. She said the scale of the information gathered during the 2019-2022 expeditions she was part of was possible only because so many ships and nations worked together. It’s the kind of collaboration the treaty may help to inspire — directly in some cases, and symbolically in others — as nations sign on.

“Collaboration is absolutely essential,” said Riddell, who was also part of the 2019-22 expeditions. “We need a dedicated, ongoing program,” to understand what’s happening to salmon and to strengthen ocean and climate models. He hopes the High Seas Treaty will lead to more support and interest in that work.

Ratification and Indigenous inclusion are not guaranteed

This year, many salmon runs are expected to hit record lows, impacting the ecosystems, economies and communities that depend on them. Chinook returns in Oregon, California and Alaska are forecast to be so low that offshore recreational and commercial fishing this spring has been cancelled in many areas. The Klamath River chinook run, upon which the Yurok Tribe relies for cultural and economic security, is expected to be the lowest in history.

“International effort to preserve and protect ocean habitat is critical to restoring these historic salmon runs,” said Amy Cordalis, an attorney, fisherwoman and Yurok tribal member who has served as the tribe’s general counsel. But “those efforts must accommodate traditional uses of those areas.”

In 2020, during negotiations on what became the High Seas Treaty, a group of scientists published a report calling on the United Nations to better incorporate Indigenous management perspectives, which they said were not adequately represented in discussions at that time. The final treaty, which includes language recognizing Indigenous rights, did better than most to include Indigenous peoples and traditional knowledge, said Marjo Vierros, a coastal policy researcher at the University of British Columbia and lead author of the report. “How that plays out in implementation is of course a different question.”

The draft treaty, which is now being proofread, still must be ratified by member nations — a political process that may yet stall out in the U.S. Due to conservative Republican opposition, the United States has yet to ratify the 40-year-old U.N. Convention on the Law of the Sea — the last treaty to govern international waters — though U.S. agencies say the country observes the law anyway.

That treaty drew the current boundary between state-controlled waters and the high seas, established rights for ships to navigate freely in international waters, and created an international body to develop deep-sea mining rules — a process that also remains, for now, unfinished. 

Researching at sea, “you gain a whole new understanding for how big (the ocean) really is,” Weitkamp said, and how much of its influence on salmon, climate and humanity remains unknown. “The ocean, especially the North Pacific, is just enormous.”

The post The UN’s first high seas treaty could help dwindling Pacific salmon appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Some coastal critters are thriving in the Great Pacific Garbage Patch https://www.popsci.com/environment/coastal-animals-great-pacific-garbage-patch/ Tue, 18 Apr 2023 14:00:00 +0000 https://www.popsci.com/?p=534854
Examples of floating plastics collected in the North Pacific Subtropical Gyre during The Ocean Cleanup’s 2018 expedition.
Examples of floating plastics collected in the North Pacific Subtropical Gyre during The Ocean Cleanup’s 2018 expedition. The Ocean Cleanup

Geographical boundaries are shifting in the open sea thanks to floating plastic pollution.

The post Some coastal critters are thriving in the Great Pacific Garbage Patch appeared first on Popular Science.

]]>
Examples of floating plastics collected in the North Pacific Subtropical Gyre during The Ocean Cleanup’s 2018 expedition.
Examples of floating plastics collected in the North Pacific Subtropical Gyre during The Ocean Cleanup’s 2018 expedition. The Ocean Cleanup

Scientists have found dozens of species of coastal invertebrates organisms thriving Oscar the Grouch style in the Great Pacific Garbage Patch. Roughly 620,000 square miles long, or twice the size of Texas, the floating garbage heap is located between Hawaii and California. Five large spinning circular currents constantly pull trash towards the center of the patch, and it is considered the largest accumulation of ocean plastic on Earth.

These creatures found thriving in trash like crabs and anemones are normally found along the coasts, but the study published April 17 in the journal Nature Ecology & Evolution says that dozens of species have been able to survive and reproduce on the plastic garbage.  

[Related: A close look at the Great Pacific Garbage Patch reveals a common culprit.]

“This discovery suggests that past biogeographical boundaries among marine ecosystems—established for millions of years—are rapidly changing due to floating plastic pollution  accumulating in the subtropical gyres,” co-author and marine ecologist Linsey Haram said in a statement. Haram conducted this research while working at the Smithsonian Environmental Research Center.

The team only recently discovered these “neopelagic communities,” or floating communities of organisms living in deep ocean waters. Organic matter in the ocean decomposes within a few years at most. But plastic debris lasts significantly longer, thus giving the animals a place to live and procreate.  

The team analyzed 105 plastic samples that were collected by The Ocean Cleanup, a non-profit organization that is working on scalable solutions to get rid of ocean plastic, during their 2018 and 2019 expeditions. The samples were found in the North Pacific Subtropical Gyre, a large zone that makes up most of that northern Pacific Ocean and is the largest ecosystem on Earth. Incredibly, 80 percent of the plastic trash that the team looked at showed signs of being colonized by coastal species. Some of the coastal species were even reproducing in their plastic homes, such as the Japanese anemone.

A map of the ocean gyre that creates the Great Pacific Garbage Patch.
The Earth’s oceans have five “gyres,” pull things in like a whirlpool. In each gyre, garbage accumulates in so-called “patches.” The most famous is between Hawaii and California. CREDIT: NOAA.

“We were extremely surprised to find 37 different invertebrate species that normally live in coastal waters, over triple the number of species we found that live in open waters, not only surviving on the plastic but also reproducing,” said Haram. “We were also impressed by how easily coastal species colonized new floating items, including our own instruments—an observation we’re looking into further.”

[Related: Ocean plastic ‘vacuums’ are sucking up marine life along with trash.]

While biologists already knew that coastal species can travel towards the open ocean on floating debris or on ships, it was long believed that these species couldn’t thrive or establish new communities at sea. Differences in temperature, water salinity, and the available nutrients between these two environments seemed too vast, but human-caused changes to the ocean ecosystems have forced marine biologists to rethink these ideas. 

“Debris that breaks off from this [garbage] patch constitutes the majority of debris arriving on Hawaiian beaches and reefs. In the past, the fragile marine ecosystems of the islands were protected by the very long distances from coastal communities of Asia and North America,” co-author and UH Mānoa oceanographer Nikolai Maximenko said in a statement. “The presence of coastal species persisting in the North Pacific Subtropical Gyre near Hawai‘i is a game changer that indicates that the islands are at an increased risk of colonization by invasive species.”

According to data from the United Nations Environment Programme (UNEP), the world produces roughly 460 million tons of plastic annually and this figure could triple by 2060 if government action is not taken soon. Some individual actions to reduce plastic use is shopping more sustainably, limiting use of single-use plastic like water bottles and plastic utensils, and participating in beach and river clean-ups.

The post Some coastal critters are thriving in the Great Pacific Garbage Patch appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Blue carbon is a natural climate solution with big potential https://www.popsci.com/environment/blue-carbon-climate-solution/ Mon, 17 Apr 2023 16:23:35 +0000 https://www.popsci.com/?p=534552
A mangrove tree in Florida to represent blue carbon and the ocean's power to fight climate change
A mangrove in Biscayne National Park, Florida. The carbon stored in coastal systems like mangroves is what's known as blue carbon. Deposit Photos

In some cases, coastal ecosystems can store more carbon than forests on land.

The post Blue carbon is a natural climate solution with big potential appeared first on Popular Science.

]]>
A mangrove tree in Florida to represent blue carbon and the ocean's power to fight climate change
A mangrove in Biscayne National Park, Florida. The carbon stored in coastal systems like mangroves is what's known as blue carbon. Deposit Photos

To curb climate change, governments across the globe have set goals to achieve “net zero emissions.” This means that for every unit of greenhouse gases put into the atmosphere, the same amount is removed through a nature-based solution—like forest protection—or artificial ones like carbon capture technology

In an effort to reach net zero by 2050, the Biden administration is investing in a promising strategy: blue carbon.

Blue carbon is a nickname for the carbon dioxide absorbed from the atmosphere and stored in the ocean and coastal ecosystems. It’s a focus of the administration’s Ocean Climate Action Plan, announced in March. 

It’s a type of carbon sink—natural or artificial reservoirs that absorb and store CO2, the heat-trapping gas primarily responsible for warming the planet. But scientists are still figuring out how people can support this process and warn that it’s not the solution to the climate crisis.

What is blue carbon?

Kelp forest with orange fish to show ocean's carbon storage potential against climate change
A healthy kelp forest can be a powerful carbon sink. Deposit Photos

First, you should know that blue carbon isn’t really blue.

“We just call it blue because we’re associating it with the ocean,” says Matthew Costa, a postdoctoral scholar researching blue carbon at the Scripps Institution of Oceanography in California. 

Carbon dioxide is like food for plants, which suck the gas out of the atmosphere and use photosynthesis to convert it into plant matter. Plants in the ocean and on the coast do the same thing. Some of that plant matter, which stores carbon, gets trapped in sediment and can stay there for hundreds or even thousands of years. This process results in a carbon sink. 

[Related: Why seaweed is a natural fit for replacing certain plastics]

It’s an example of an ecosystem service, which is an aspect of a natural environment that benefits people. Other examples include forests that filter our air, wetlands that buffer against storms, and the plants we eat. “We put it in the service context in economics terms because it’s basically a service that the system is doing, but we don’t have to pay for it,” Costa says. 

Salt marshes, mangroves, seagrass beds, and kelp forests are the ecosystems people generally refer to when discussing blue carbon in the United States. Mangroves are in southern Florida and some parts of Texas and Louisiana, while most algal beds are on the West Coast. Salt marshes are found on coastlines, while seagrasses are wherever there’s ocean water.

The top meter of sediment in the open ocean stores about double the amount of carbon stored on land, according to a 2020 study published in the journal Frontiers in Marine Science. Dead animals and plants, which hold carbon, sink and become buried in the seafloor. Phytoplankton—tiny single-cell organisms found throughout the ocean—play a significant role in this carbon burial. 

But since the ocean is so vast, tracking how much carbon is stored is difficult. And more importantly, strategies for increasing carbon storage in the open ocean, like increasing phytoplankton growth, are less established and feasible than strategies for managing coastal ecosystems, according to Costa.

Why is blue carbon important?

While researchers stress that blue carbon won’t “solve” the climate crisis, it is one of many approaches governments can take to chip away at their net zero goals. 

Coastal ecosystems around the globe make up only a few hundred thousand square kilometers, which is relatively small compared to the ocean. But they are particularly good at absorbing carbon. Carbon accumulates in mangroves, salt marshes, and seagrasses at a rate ten times faster than in terrestrial ecosystems. These areas also store about four times more carbon than terrestrial forests, according to Trisha Atwood, an associate professor of watershed sciences at Utah State University.

Seagrass underwater to show ocean's carbon-storage potential
Seagrass is another plant that can absorb and store carbon dioxide. Deposit Photos

Costa says there are two reasons why these coastal ecosystems are more potent at storing carbon than forests, another major carbon sink. First, carbon builds up in the sediment, not just in the plants. Second, coastal ecosystems also import carbon from other environments. For example, when the tide rolls in and out in a tidal marsh, it carries particles of organic matter, which contain carbon. That organic matter also gets trapped in the sediment, storing even more carbon. 

“When a giant tree falls to the forest floor, that trunk is sitting on the forest floor within a couple of years,” Costa says. Fungi, insects, and microorganisms quickly break down the wood and roots. Subsequently, the carbon transforms back into CO2

“Those organisms are eating that material and breathing it out, just like when we eat food and breathe out CO2,” Costa adds. “So that carbon has a lower residence time, we’ll say it doesn’t get to spend as much time trapped in that ecosystem.” 

Meanwhile, carbon tends to stay in coastal sediment once absorbed. The exception to this is when it’s disturbed by people. 

“If you bulldoze that salt marsh or mangrove, or you disturb and dredge the sediment or something like that, you can then release a lot of that carbon,” Costa explains.

How much can blue carbon help?

Atwood stresses that restoring blue carbon ecosystems is different from replanting a forest, and we have to be careful not to over-promise what blue carbon can achieve.

“These systems are often in difficult-to-reach places, and seagrasses are submerged so they are not really visible,” she explained over email. “As a result, they can be hard to monitor, and we need a good way to ensure that restoration and protection efforts remain effective through time.”

[Related: Climate change is making the ocean lose its memory. Here’s what that means.]

However, if these coastal ecosystems are restored, they can do more than store carbon. Atwood says these natural spaces also reduce the impact of storms on coastal communities, act as nursery habitats for economically important fisheries species, and bring in tourism.

Ultimately, investing in blue carbon is just one of the many actions we must take to mitigate climate change, says Costa.

“This is not a sort of a silver bullet,” he says. “If we’re protecting these ecosystems and not reducing our emissions, we’re not going in a good direction.”

The post Blue carbon is a natural climate solution with big potential appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
California’s eye-popping super bloom is one for the books https://www.popsci.com/environment/california-super-bloom-2023/ Mon, 17 Apr 2023 13:00:00 +0000 https://www.popsci.com/?p=534499
People walk in a field with blooming poppy flowers near the Antelope Valley California Poppy Reserve following an unusually wet winter on April 14, 2023 near Lancaster, California. Historic levels of rainfall fell in some parts of California, amid a barrage of atmospheric river winter storms, which has led to a 'super bloom' of wildflowers in certain parts of the state this spring.
People walk in a field with blooming poppy flowers near the Antelope Valley California Poppy Reserve following an unusually wet winter on April 14, 2023 near Lancaster, California. Historic levels of rainfall fell in some parts of California, amid a barrage of atmospheric river winter storms, which has led to a 'super bloom' of wildflowers in certain parts of the state this spring. Mario Tama/Getty Images

The state’s wet winter leaves flowers blooming and cameras clicking.

The post California’s eye-popping super bloom is one for the books appeared first on Popular Science.

]]>
People walk in a field with blooming poppy flowers near the Antelope Valley California Poppy Reserve following an unusually wet winter on April 14, 2023 near Lancaster, California. Historic levels of rainfall fell in some parts of California, amid a barrage of atmospheric river winter storms, which has led to a 'super bloom' of wildflowers in certain parts of the state this spring.
People walk in a field with blooming poppy flowers near the Antelope Valley California Poppy Reserve following an unusually wet winter on April 14, 2023 near Lancaster, California. Historic levels of rainfall fell in some parts of California, amid a barrage of atmospheric river winter storms, which has led to a 'super bloom' of wildflowers in certain parts of the state this spring. Mario Tama/Getty Images

Following an usually wet winter in the West, California is beginning to emerge from a serious drought. The state, however, is now beautifully awash in wildflowers. The state is seeing a “super bloom,” similar to the Instagram famous super bloom of 2019

A unique combination of sun, rain, temperature, and wind set the stage for the arrival of desert wildflowers in the late winter and early spring, according to the California Department of Parks and Recreation

[Related: Powerful atmospheric river pummels California with even more rain and flooding.]

“California’s desert state parks are cautiously optimistic in expecting a ‘good’ to ‘better than average’ wildflower bloom this late winter and spring seasons depending on the continued weather conditions,” the department said on their website

This super bloom only happens after particularly wet seasons, which typically follow years of drought. Many parts of California saw more rain in the first few months of this year than in all of 2022, according to local CBS affiliate KFMB.

During the dry years, many annual wildflower seeds lay dormant in fragile layers of soil. If enough rain arrives, they germinate and the flowers can burst through. The areas with blooms typically see large and dense qualities of wildfires covering the landscape and some of the most beautiful blooms are in desert landscapes. Depending on the region, California poppies, sand verbena, desert sunflowers, evening primrose, popcorn flowers or desert lilies could be growing. 

Purple and yellow wildfires blooming in California's Coyote Canyon with desert mountains in the distance.
Coyote Canyon’s desert sunflowers and sand verbena during the 2019 super bloom. CREDIT: © California State Parks, all rights reserved. [2019]

In the Antelope Valley north of Los Angeles, California poppies gleam bright orange. During the 2019 super bloom, thousands of tourists and influencers came out to view the poppies, which led to the unfortunate trampling of some of the flowers. New rules for both safety and conservation have been put in place in Lake Elsinore to protect the poppy bloom in nearby Walker Canyon. In an advisory on how to see the flowers safely and responsibly, California State Parks Director Armando Quintero asked visitors not to “doom the bloom.” Visitors are urged to stay on trails and not pick any of the flowers. 

The poppies aren’t the only stars of the season. In California’s Central Valley, Purple phacelia and yellow goldfields abound at Carrizo Plain National Monument, a grassland roughly 70 miles west of Bakersfield. 

[Related: Don’t go to Death Valley looking for a ‘Super Bloom.’]

This year’s bloom is an opportunity for scientists who study rare plants to study ecosystems that have been lost to development or agriculture over the years. Heather Schneider, a rare plant biologist with the Santa Barbara Botanic Garden told The New York Times that the sustained colder temperatures and precipitation would likely give researchers more time to study wildflowers than in past wet years.  “This is how we feed our souls,” said Schineder.

Since different flower species thrive in subtly different conditions and times of year, botanists have predicted that this year’s wildflower season may extend through the spring and into the summer, especially in higher elevations. 

To safely and respectfully view the superbloom, visitors can consult the state’s safety tips and consult the bloom calendar for updates on what is blooming where. 

The post California’s eye-popping super bloom is one for the books appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Baby cod seem to be drawn to the lullaby of wind turbines https://www.popsci.com/environment/baby-cod-offshore-wind-turbines/ Sat, 15 Apr 2023 23:00:00 +0000 https://www.popsci.com/?p=534107
Offshore wind power is a booming slice of the renewable energy mix. But like everything else, building machines in the ocean has some side effects.
Offshore wind power is a booming slice of the renewable energy mix. But like everything else, building machines in the ocean has some side effects. Photo by Ben Birchall/PA Images via Getty Images

Experiments show larval cod will orient themselves toward the simulated sound of a turbine.

The post Baby cod seem to be drawn to the lullaby of wind turbines appeared first on Popular Science.

]]>
Offshore wind power is a booming slice of the renewable energy mix. But like everything else, building machines in the ocean has some side effects.
Offshore wind power is a booming slice of the renewable energy mix. But like everything else, building machines in the ocean has some side effects. Photo by Ben Birchall/PA Images via Getty Images

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

Offshore wind is one of the fastest-growing sources of renewable energy, and with its expansion comes increasing scrutiny of its potential side effects. Alessandro Cresci, a biologist at the Institute of Marine Research in Norway, and his team have now shown that larval cod are attracted to one of the low-frequency sounds emitted by wind turbines, suggesting offshore wind installations could potentially alter the early life of microscopic fish that drift too close.

Cresci and his colleagues made their discovery through experiments conducted in the deep fjord water near the Austevoll Research Station in Norway. The team placed 89 cod larvae in floating transparent mesh chambers that allowed them to drift naturally, then filmed as they subjected half the fish in 15-minute trials to the output of an underwater sound projector set to 100 Hz to mimic the deep thrum put out by wind turbines.

When left to their own devices, all of the cod larvae oriented themselves to the northwest. Like the closely related haddock, cod have an innate sense of direction that guides their ocean swimming. When the scientists played the low-frequency sound, the baby fish still had a northwest preference, but it was weak. Instead, the larvae favored pointing their bodies in the direction of the sound. Cresci thinks the larvae may be attracted to the 100-Hz sound waves because that low frequency is among the symphony of sounds sometimes part of the background din along the coastline or near the bottom of the ocean where the fish might like to settle.

A time-lapse video shows larval cod orienting themselves toward the direction of a low-pitched 100-Hz sound meant to mimic one of the frequencies emitted by offshore wind turbines. Video courtesy of Alessandro Cresci

As sound waves propagate through water, they compress and decompress water molecules in their path. Fish can tell what direction a sound is coming from by detecting changes in the motion of water particles. “In water,” says Cresci, fish are “connected to the medium around them, so all the vibrations in the molecules of water are transferred to the body.”

Like other creatures on land and in the sea, fish use sound to communicate, avoid predators, find prey, and understand the world around them. Sound also helps many marine creatures find the best place to live. In previous research, scientists have shown that by playing the sounds of a thriving reef near a degraded reef they could cause more fish to settle in the area. For many species, where they settle as larvae is where they tend to be found as adults.

Even if larval fish are attracted to offshore wind farms en masse, what happens next is yet unknown.

Since fishers typically can’t safely operate near turbines, offshore wind farms could become pseudo protected areas where fish populations can grow large. But Ella Kim, a graduate student at the Scripps Institution of Oceanography at the University of California San Diego who studies fish acoustics and was not involved with the study, says it could go the other way.

Kim suggests that even if fish larvae do end up coalescing within offshore wind farms, the noise from the turbines and increased boat traffic to service the equipment could drown out fish communication. “Once these larvae get there,” Kim says, “will they have such impaired hearing that they won’t be able to even hear each other and reproduce?”

Aaron Rice, a bioacoustician at Cornell University in New York who was not involved with the study, says the research is useful because it shows that not only can fish larvae hear the sound, but that they’re responding to it by orienting toward it. Rice adds, however, that the underwater noise from real wind turbines is far more complex than the lone 100-Hz sound tested in the study. He says care should be taken in reading too much into the results.

As well as noise pollution, many marine species are also at risk from overfishing, rising ocean temperatures, and other pressures. When trying to decide whether offshore wind power is a net benefit or harm for marine life, says Rice, it’s important to keep these other elements in mind.

“The more understanding that we can have in terms of how offshore wind [power] impacts the ocean,” he says, “the better we can respond to the changing demands and minimize impacts.”

This article first appeared in Hakai Magazine and is republished here with permission.

The post Baby cod seem to be drawn to the lullaby of wind turbines appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What happens when a tree dies? https://www.popsci.com/science/how-do-trees-die/ Fri, 14 Apr 2023 22:00:00 +0000 https://www.popsci.com/?p=534100
When a tree dies, it continues to play an important role.
When a tree dies, it continues to play an important role. DepositPhotos

Eventually weather, pests and disease will take their toll, but the story doesn’t end there.

The post What happens when a tree dies? appeared first on Popular Science.

]]>
When a tree dies, it continues to play an important role.
When a tree dies, it continues to play an important role. DepositPhotos

This article is republished from The Conversation.

Trees can die suddenly or quite slowly.

Fire, flood or wind can cause a quick death by severely damaging a tree’s ability to transport water and nutrients up and down its trunk.

Sometimes a serious insect attack or disease can kill a tree. This kind of death usually takes from a few months to a couple of years. Again, a tree loses its ability to move water and nutrients, but does so in stages, more slowly.

A tree can also die of what you might call old age.

I am a scientist who studies trees and the web of living things that surround them. The death of a tree is not exactly what it seems, because it directly leads to new life.

Different trees, different life spans

Trees can live an incredibly long time, depending on what kind they are. Some bristlecone pines, for instance, are among the oldest known trees and are more than 4,000 years old. Others, like lodgepoles or poplars, will have much shorter life spans, from 20 to 200 years. The biggest trees in your neighborhood or town are probably somewhere in that range.

You’ve probably noticed that different living things have different life spans – a hamster is generally not going to live as long as a cat, which isn’t going to live as long as a person. Trees are no different. Their life spans are determined by their DNA, which you can think of as the operating system embedded in their genes. Trees that are programmed to grow very quickly will be less strong – and shorter lived – than ones that grow very slowly.

But even a tough old tree will eventually die. The years and years of damage done by insects and microscopic critters, combined with abuse from the weather, will slowly end its life. The death process may start with a single branch but will eventually spread to the entire tree. It may take a while for an observer to realize a tree has finally died.

You might think of death as a passive process. But, in the case of trees, it’s surprisingly active.

The underground network

Roots do more than anchor a tree to the ground. They are the place where microscopic fungi attach and act like a second root system for a tree.

Fungi form long, superfine threads called hyphae. Fungal hyphae can reach much farther than a tree’s roots can. They gather nutrients from the soil that a tree needs. In exchange, the tree repays fungi with sugars it makes out of sunlight in a process known as photosynthesis.

You might have heard that fungi can also pass nutrients from one tree to another. This is a topic that scientists are still working out. Some trees are likely connected to other trees by a complex underground network of fungi, sometimes called the “wood wide web.”

How the wood wide web functions in a forest is still not well understood, but scientists do know that the fungi forming these networks are important for keeping trees healthy.

Afterlife of a tree

Before it topples over, a dead tree can stand for many years, providing a safe home for bees, squirrels, owls and many more animals. Once it falls and becomes a log, it can host other living things, like badgers, moles and reptiles.

Logs also host a different kind of fungi and bacteria, called decomposers. These tiny organisms help break down big dead trees to the point where you would never know they had existed. Depending on the conditions, this process can take from a few years to a century or more. As wood breaks down, its nutrients return to the soil and become available for other living things, including nearby trees and fungal networks.

A tree leaves a legacy. While alive, it provides shade, home for many animals and a lifeline to fungi and other trees. When it dies, it continues to play an important role. It gives a boost to new trees ready to take its place, shelter to a different set of animals and, eventually, nourishment for the next generation of living things.

It’s almost as if a tree never truly dies but just passes its life on to others.


Editor’s note: This story has been updated to emphasize that much remains unknown about the relationship between trees and fungi.


This article is republished from The Conversation under a Creative Commons license. Read the original article.

The post What happens when a tree dies? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Pendulums under ocean waves could prevent beach erosion https://www.popsci.com/environment/ocean-wave-pendulums/ Mon, 10 Apr 2023 17:00:00 +0000 https://www.popsci.com/?p=533009
Ocean waves crashing on rocky shoreline on cloudy day.
A relatively simple underwater system could absorb some of waves' energy before they reach shore. Deposit Photos

Waves are getting worse, but letting these cylinders take the hit could help slow coastal erosion.

The post Pendulums under ocean waves could prevent beach erosion appeared first on Popular Science.

]]>
Ocean waves crashing on rocky shoreline on cloudy day.
A relatively simple underwater system could absorb some of waves' energy before they reach shore. Deposit Photos

Climate change is giving us stronger, more destructive ocean waves, which in turn exacerbate already serious coastal erosion issues. With this in mind, researchers are designing a new underwater engineering project that could help literally swing the pendulum back in humanity’s favor. As first highlighted by New Scientist on Sunday, a team at the Italian National Research Council’s Institute of Marine Science are working on MetaReef—a system of upside-down, submersible pendulum prototypes capable of absorbing underwater energy to mitigate wave momentum.

Although still in its laboratory design phases, MetaReef is already showing promising results. To test early versions of their idea, the team tethered together 11, half-meter-long plastic cylinders to the bottom of a narrow, 50-meter long tank. Each cylinder is made from commercial PVC pipes, filled with air to make them less dense than water, and subsequently waterproofed with polyurethane foam. A steel cable then anchors each cylinder with just enough tension to keep them in place underwater, while also able to swing back and forth depending on currents’ strength and direction.

[Related: Maritime students gear up to fight high-seas cyberattacks.]

It’s not as simple as just anchoring a series of tubes under the waves, however. Researchers needed to hone both the cylinders’ size and distance between one another to ensure optimal results that wouldn’t accidentally create a watery echo chamber to exacerbate current strengths. Once the parameters were fine tuned, a piston at one end of the tank generated waves that interacted with the cylinders. By absorbing the tidal energy, the team’s MetaReef managed to reduce wave amplitudes by as much as 80 percent.

Of course, ocean current interactions are much more complicated than pistons splashing water in a relatively small tank. Speaking with New Scientist, Mike Meylan,  a professor of information and physical sciences, warned that especially strong storms—themselves increasingly frequent—could easily damage pendulum systems deployed in the real world. That said, researchers are confident that MetaReef’s customizability alongside further experimentation could yield a solid new tool in protecting both threatened coastlines, and valuable structures such as offshore platforms. This malleability is contrasted with artificial coastal reefs, which while effective, are much more static and limited in placement than MetaReef, or similar designs.

The team is presenting their findings this week at the annual International Workshop on Water Waves and Floating Bodies held in Giardini Naxos, Italy. Although societal shifts in energy consumption remain the top priority to stemming the worst climate catastrophes, tools like MetaReef could still offer helpful, customizable aids that deal with damage already done to our oceanic ecosystems.

The post Pendulums under ocean waves could prevent beach erosion appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Lunar laws could protect the moon from humanity https://www.popsci.com/science/space-law-moon-protections/ Mon, 10 Apr 2023 10:00:00 +0000 https://www.popsci.com/?p=532629
Astronaut Buzz Aldrin photographed on the moon during Apollo 11 by Neil Armstrong
Buzz Aldrin and Neil Armstrong's famous first moon walk could be preserved as a heritage site. NASA

Some space law experts want to treat the moon like a national park. Here's why.

The post Lunar laws could protect the moon from humanity appeared first on Popular Science.

]]>
Astronaut Buzz Aldrin photographed on the moon during Apollo 11 by Neil Armstrong
Buzz Aldrin and Neil Armstrong's famous first moon walk could be preserved as a heritage site. NASA

On Earth, we’ve decided that some places are worth saving. Whether it’s the pyramids of Giza or the battlefield lands at Gettsyburg, sites that epitomize our cultural heritage are safeguarded by legal frameworks. 

But human history extends beyond our planet. In 1969, astronaut Neil Armstrong became the first human to walk on the moon and left behind that first footprint. Some view it as comparable to any archeological site on Earth—without the same protections. Undisturbed, the footprint could last for a million years. But a revived interest in the moon means the lunar surface is about to be busier than ever. No law specifically defends the footprint or sites like it from being run over by a lunar rover or astronauts on a joyride

“Just in this year alone, we have four or five missions planned,” says Michelle Hanlon, a space lawyer and co-founder of the nonprofit For All Moonkind. “Not just from nations, but from private companies.” While some upcoming lunar expeditions will be flybys, others will actually land on the moon. 

In some ways, it’s a race against the clock—and Hanlon is making moves. On March 27, while attending a meeting of the legal subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS), she announced the creation of the For All Moonkind Institute on Space Law and Ethics. This new nonprofit organization will go beyond advocating for protecting off-world heritage sites and contemplate the ethics around some activities in space that are not fully covered in existing international law.  

Buzz Aldrin Apollo 11 bootprint on the moon
The moon is also home to the bootprint of astronaut Buzz Aldrin. NASA

There is some precedent to lunar law. The Outer Space Treaty of 1967 governs activities in outer space and sets important boundaries: Anything but peaceful use of the moon is prohibited, and nations are not allowed to claim territory on the satellite or any celestial body.

The Outer Space treaty is also quite vague, according to Christopher Johnson, a space lawyer with the Secure World Foundation, a nonprofit dedicated to space sustainability. You can use resources in space but not appropriate them. In addition, you must give other nations and companies “due regard” and avoid “harmful contamination” of the extraterrestrial environment. 

However, these general principles have never been applied to solving practical problems. “We are realizing that we just have a couple of broad dictums,” Johnson says. “You know, be nice to your neighbor, observe the golden rule, show people a little bit of respect.”

[Related: Say hello to the Commerce Department’s new space traffic-cop program]

Because these rules have not really been tested, Johnson says we can’t be sure people will follow them. The experiment is about to begin: India and Russia plan to launch their unscrewed Chandrayaan 3 and Luna 25 missions to the lunar surface this summer, for instance, while Japanese company iSpace hopes to place a lander on the lunar surface in late April. SpaceX aims to ferry a billionaire customer around the moon in a Starship vehicle by year’s end.

It was with an eye on increasing human activity on and around the moon that Hanlon co-founded For All Moonkind in 2017, an all-volunteer organization dedicated to lobbying for legal protections for areas of cultural heritage on the moon and elsewhere in space. That includes the Apollo program landing sites and the lunar landers left behind by the Soviet Union. These protections could eventually extend to natural wonders like Olympus Mons, the largest volcano on Mars and in the solar system.

Together with For All Moonkind, the Secure World Foundation produced a Lunar Policy Handbook, which they distributed at the United Nations in Vienna during the For All Moonkind Institute announcement at the end of March. Both For All Moonkind and the Secure World Foundation are official observer organizations at COPUOS and are allowed to sit in on meetings. 

Apollo 15 astronauts driving lunar rover across moon crater
During the Apollo 15 mission, astronauts drove around the moon on a lunar rover. NASA

The new institute and the handbook represent a modern interest among policymakers, space lawyers, and private companies to create clearer rules of the road for how humans will actually behave on the moon when there are multiple parties present around the same time. These are issues Johnson says policymakers need to be wary of and that they should think through the precedents that could be set by actions that are not necessarily against international law but might not be a good idea.

“This is why we created the Institute on Space Law and Ethics because there are people who want to know what it means to be responsible,” Hanlon says. “The problem is we don’t have a blueprint for that.”

Johnson points to the 2019 crash landing of the Israeli Beresheet lunar lander as an example, where unknown to the other parties of the mission, the nonprofit Arch Mission Foundation had included freeze-dried tardigrades, also known as water bears, in the payload. Tardigrades are hardy and known to be able to survive in the vacuum of space, so their spilling onto the lunar surface could present a form of biological contamination, although some follow-up research suggests the microscopic creatures did not survive the violent impact. 

“Smuggling tardigrades to the moon doesn’t seem to clearly violate any international law that I can point to,” Johnson says. “The ethical component steps in to fill a gap about the law to say, ‘Well, is it a good idea?’” 

[Related: Want to learn about something in space? Crash into it.]

Protecting cultural heritage sites like the Apollo landing sites, on the other hand, could actually be interpreted as violating the probation on claiming territory in space, according to Hanlon. That’s why For All Mankind is involved in discussions around the ethics of lunar activity generally, she says.  The hope is that—if the world’s nations can agree that there’s significant, shared cultural heritage on the moon—the aftereffect could be better relations between major players in the current space race. 

“The ultimate goal is a new treaty, not an amendment to the Outer Space Treaty, that recognizes cultural heritage beyond Earth,” Hanlon explains. “It’s going to be a long time, especially now with the Russian invasion of Ukraine, for us to all agree on something here at the UN. But we think it can start with that heritage, that kinship that way.”

Or as US President Lyndon Johnson put it when signing the Outer Space Treaty, we “will meet someday on the surface of the moon as brothers and not as warriors.”

The post Lunar laws could protect the moon from humanity appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Dog’s are a human’s best friend—and a shorebird’s worst enemy https://www.popsci.com/environment/dogs-beach-bird-conservation/ Fri, 07 Apr 2023 22:00:00 +0000 https://www.popsci.com/?p=532234
Off-leash dogs on beaches cause problems for all kinds of life, perhaps most noticeably, shorebirds.
Off-leash dogs on beaches cause problems for all kinds of life, perhaps most noticeably, shorebirds. DepositPhotos

What will it take to control beach dogs—and, more importantly, their owners?

The post Dog’s are a human’s best friend—and a shorebird’s worst enemy appeared first on Popular Science.

]]>
Off-leash dogs on beaches cause problems for all kinds of life, perhaps most noticeably, shorebirds.
Off-leash dogs on beaches cause problems for all kinds of life, perhaps most noticeably, shorebirds. DepositPhotos

This article is from Hakai Magazine, an online publication about science and society in coastal ecosystems.

Kit saw the ocean for the first time on an iron-skied February afternoon. My wife and I had spent the last three years in eastern Washington State, a region landlocked by 600 kilometers of forests, sagebrush, and wheat fields. For most of that time, we’d cohabited with Kit, an affectionate piebald mutt we’d adopted from a local shelter. Now we were moving to another inland environment—Colorado—via a circuitous road trip that took us through San Francisco. Our brief time in California, we realized, might be Kit’s first and last chance to lay her protuberant eyes upon the sea.

We drove to an ocean beach that some literal-minded city father had named Ocean Beach. I walked Kit onto the damp sand and watched her scrape at the stuff, as though trying to find its bottom. I unclipped her leash and Kit began to saunter, then run, one step ahead of the frothy surf, like a sandpiper. The wind pinned her floppy ears against her head, and she flung herself down to roll ecstatically in some dead washed-up thing. She looked happy; she looked free; she looked right.

In that, Kit wasn’t alone: most dogs love the beach. But the beach doesn’t love our dogs. A growing body of literature suggests that Canis lupus familiaris has become a significant force of disturbance along the world’s shorelines—not just the packs of feral dogs who roam some less regulated shores, but the domestic pooches whose well-meaning owners, like me, turn them loose for a romp in the sand. Dogs have been known to maul seal pups, outcompete eagles for dead fish, and dig up turtle nests. They save their worst harms for shorebirds, killing chicks, crushing eggs, and forcing migrating birds to burn more calories than they can spare. “Man’s best friend,” researchers concluded in 2011 with typical scientific understatement, “may not be wildlife’s best steward.”

In response to these harms, coastal managers have implemented leash laws, seasonal restrictions, and even outright dog bans. But limiting when and where our mutts can move invites controversy. After politicians enacted a partial dog ban on one Australian beach, aggrieved pet owners claimed that they’d become “criminals in [their] own backyards.” Others gripe that even strict laws are rarely enforced: in San Diego, where beach dogs are subject to a passel of regulations, vigilantes seem to take perverse pleasure in videotaping scofflaws. While our pets are the nominal causes of these conflicts, however, the real culprits aren’t Akitas and Airedales, but us—and our mastiff-sized blind spots around our furry family members. The dogs, of course, are just being dogs.


When we think about destructive pets, cats come first to mind. Whether feral or free-range, cats are swift, silent assassins, responsible for the deaths of up to four billion birds and 22 billion mammals each year in the United States alone. Dogs, by contrast, seem more goofy than lethal, hilariously distant from their wolfish origins. (Does a Shih Tzu really strike terror in any other animal?) In The World Without Us, author Alan Weisman postulated that, should humankind abruptly disappear, cats would fare just fine. Dogs, however, would vanish alongside their people, unable to survive without their twice-daily bowls of kibble.

Yet dogs, the world’s most abundant carnivores, exert immense impacts in their own right. In Mongolia, they kill antelopes and gazelles; in New Zealand, they’ve hampered the recovery of imperiled kiwis. Australian researchers have shown they scare off enough animals to “cause a depauperate local bird fauna.” In Russia’s Lake Baikal, they once transmitted a deadly virus to freshwater seals.

In 2019, on a reporting trip to Tasmania, Australia, I heard a firsthand account that exemplified the dangers of dogs. One evening, I met up with the founder of a group devoted to safeguarding the colonies of little blue penguins that nest along the state’s north coast. As we watched penguins—stout as bowling pins, feathered in glossy indigo, plump with sardines—waddle ashore after several days at sea, the advocate outlined the measures he’d taken to protect his beloved birds. He had erected fencing along a coastal highway to keep them from wandering into traffic and cleaned hundreds of the birds after a tanker ran aground and befouled the beach with oil. Yet he felt powerless to save penguins from the domestic dogs that occasionally escaped their owners, wandered down to the beach, and, on stumbling upon such vulnerable prey, instinctively began to slaughter. (Even friendly dogs can kill: penguins are so easily stressed that “playing” with them can induce cardiac arrest.) The year I visited, six separate dog attacks on four colonies had claimed the lives of more than 250 penguins.

“We don’t have dog attacks in Tasmania—we have dog massacres,” the group’s leader, who asked to remain anonymous for fear of reprisal from local dog owners, told me. “It takes two to 10 minutes for a dog to kill 40 or 50 penguins.”

Granted, little blue penguins are uniquely easy victims; not even the fastest greyhound is likely to catch an adult gull or dunlin. But the mere presence of dogs is enough to send birds into flight: after all, what’s a poodle but an unusually curly-haired fox, coyote, or wolf? In Chile, scientists have observed dogs pursuing whimbrels, a graceful shorebird that probes mudflats with a long, curved bill. On Mediterranean beaches, dog walkers flush plovers from their nests far more often than humans alone, exposing eggs to predators and thermal stress.

“Certain dog owners seem not just to allow it, but to take their dogs to the beach so that they can chase birds,” says David Newstead, bird program director at the Texas-based nonprofit Coastal Bend Bays and Estuaries Program. “These are otherwise conservation-minded people.”

Hounding birds on the beach seems like a benign behavior, or even a wholesome form of play: picture a euphoric golden retriever, tongue lolling and paws kicking up sand, merrily dispersing a flock of terns into a summer sky. Yet even a few brief flights can have big impacts. On the Gulf Coast beaches where Newstead works, many shorebirds are migrants—red knots, piping plovers, sanderlings—who have come to Texas to refuel during epic transcontinental journeys. They spend their days alternately resting and gorging on marine invertebrates, a cycle that’s critical to building the energy stores that migration requires. Dogs disrupt this loafing and feeding, leaving birds less equipped to complete their voyages.

“Every time you’re forcing birds to fly down the beach, the gas tank is going toward empty,” Newstead says. “If they can’t take in more energy than they’re expending on that beach, they’re eventually going to leave. It’s functional habitat loss.” When Newstead gently reprimands dog owners, he appeals to analogy and sympathy: imagine you’ve just gotten home from work and want nothing more than to chill on the couch with a beer—and then a pack of barking dogs tears into the house and chases you outside, over and over again. “Sometimes they grudgingly put their dog back on a leash,” he says. “Sometimes they just say to hell with you.”


Dogs also disturb ecosystems in stranger, subtler ways. In the fall of 2020, Brooke Maslo, an ecologist at Rutgers University in New Jersey, embarked on an ambitious study of how coastal scavengers dispose of carrion. She and her collaborators set out motion-activated cameras on beaches along the Jersey Shore, then baited each with three fish carcasses acquired from tackle shops. “They would always get a big kick out of it,” Maslo says. “‘What do you want 150 dead menhaden for?’”

Maslo’s intent wasn’t to study dogs—it was to monitor the wildlife that came to beaches to feed, from red foxes and raccoons to corvids and laughing gulls. Yet dogs inevitably appeared. Sometimes Maslo’s cameras caught owners dragging their pooches away from the dead fish or placing the carcasses back on the ground, presumably after prying them from their pets’ jaws. More often the dogs urinated or defecated around the menhaden, as though claiming the carrion as their own.

At first, Maslo admits, the constant canine presence was frustrating: here she was, trying to document wild scavengers, and her cameras were clogged with domestic ones instead. As she watched more videos, though, a pattern emerged: When dogs appeared during the day, other scavengers steered clear that night, likely scared off by the scent-marking of an apex canid. Raccoons, skunks, and grackles were completely absent from dog-infested beaches, and foxes, black-backed gulls, and ghost crabs were rare. Maslo and her colleagues observed last year in Scientific Reports that nocturnal scavengers took 34 percent longer to find the dead fish after dogs had come around and ate far smaller portions when they finally showed up.

Why does this matter? Coastal necrophages play a crucial and salutary role, consuming the dead and thus preventing beaches from being strewn with carcasses. What’s more, Maslo says, mobile scavengers like gulls distribute carrion across beaches, spreading out nutrients and thus supporting ecosystems—not unlike dying salmon gifting their nitrogen and phosphorus to the forests in which they spawn. By claiming beaches for their own, dogs inhibit this breakdown and dispersal. You might not find a dachshund particularly intimidating, yet our pets are creating landscapes of fear, monopolizing food sources, and disrupting life’s fundamental processes.


In fairness, coastal managers aren’t blind to dogs’ impacts. Not long after I visited Tasmania, the state government raised the fines for owners whose dogs entered penguin colonies more than 20-fold, a measure that dramatically reduced the rate of attacks. Still other beaches require dogs to be leashed, restrict the hours in which they’re permitted to run loose, or are altogether dog-free. Oregon, for instance, bars even leashed dogs from snowy plover nesting grounds between March 15 and September 15. After an off-leash dog killed a piping plover chick in Scarborough, Maine, in 2013, the town hired plover police to post signs and educate beachgoers about leash laws. “I was expecting to be getting a lot more negativity,” a plover cop cheerfully told reporters.

But Scarborough’s plover guards are more exception than rule—for when dog regulations arrive, controversy usually follows. Few people know that better than Karen Harper, a councilor in Saanich, a municipal district on Vancouver Island, British Columbia. For years Harper had fielded complaints from coastal homeowners who’d witnessed dogs harassing wildlife and people along Cadboro Bay, an inlet whose beaches lie within a federal bird sanctuary. Although Canadian law prohibited off-leash dogs in the sanctuary, Saanich’s own regulations permitted them. In early 2020, Harper, hoping to resolve the contradiction, formally requested that Saanich’s staff study dogs’ impacts and review its bylaws.

“And then,” she says, “all hell broke loose.”

Angry emails poured into the council: Saanich residents urged Harper to “stop wasting staff time,” called her concerns “unfounded and largely irrelevant,” and described her request as “bogus procedure.” (Other commenters applauded Harper for confronting the degradation of “precious and priceless natural areas.”) On Facebook, Harper says, residents derided her as a “dog hater,” though she’d long owned dogs, most recently a pair of German shepherds. One local had dog feces flung into her yard. The situation got so volatile that animal-control officers started going to the beaches in pairs.

Harper was grappling with a persistent conundrum in coastal management: we know a lot more about how dogs harm beaches than how to get people to rein in their pets. In one typical study, researchers in southeast Australia found that just one-third of dog walkers felt “strongly obliged” to leash dogs. “While wildlife protection is important to dog owners,” the scientists added, “greater importance is given to the benefits of unleashed exercise for dogs.” Per one survey, 85 percent of American dog owners consider their pets part of the family; no wonder we privilege our own animals’ happiness over the welfare of wild creatures.

Other scientists have sought the answer in one of humanity’s most powerful motivators: peer pressure. In 2018, researchers interviewed nearly 900 coastal dog walkers in Maine, New York, and South Carolina. People didn’t just let their dogs roam free to exercise and sniff other mutts, they realized, but because social and personal norms sanctioned it. To change the attitudes of dog owners, the researchers proposed modeling different behavioral norms. Perhaps a group of volunteers could parade Spot and Rex around on leashes, each dog outfitted with a vest that reads “This Dog Shares the Shore with Shorebirds.” Social media loves nothing so much as a puppy (well, aside from a cat); maybe #ThisDogSharesTheShore will someday go viral on Instagram.

Still, the most sure-fire solution to averting dog conflict is also the most draconian—an outright ban of even leashed dogs. “Canadians are theoretically compliant types, but if you have leash-only areas, people ignore it,” Harper says. “It’s kind of discouraging.” The temptation to let dogs run free may be irresistible; better, perhaps, to proscribe our pooches altogether.

Ultimately, it’s hard not to conclude that the furor over dogs is a red herring—for the real problem isn’t our mutts, but our cognitive dissonance. Just as we forgive the foibles of our human relatives, we ignore the casual harm wrought by our four-legged children. (“Sure, those other dogs might chase birds, but my Duke would never hurt a fly.”) Perhaps because our dogs’ behaviors are a direct reflection of us, we harbor the delusion that they’re under our control; I recently saw an off-leash collie take a healthy bite of a jogger’s butt, even as the animal’s owner yelled at her to stand down. We rationalize their misdeeds, overrate their training, prioritize their pleasure over other beings’ right to exist. Love is not only blind, it’s blinding.

Much though I believe in protecting the natural world from our pets, I’m as guilty of this myopia as anyone. Earlier this winter, a year after Kit experienced the Pacific Ocean, I took her skiing near our new home in Colorado—unleashedFor a few minutes she trotted beside me, sniffing scat and eyeing squirrels, and, as always, I felt joy to see her happy and stimulated. Then she veered into a jumble of windblown logs and scrabbled at the snow with her paws. I slogged over and dragged her away, but it was too late; she’d unearthed and killed a hibernating vole, soft and warm as a newborn’s cheek. I felt grief, then momentary anger at Kit, but it wasn’t her fault—she was merely doing what her ancestors had been bred to do. The responsibility was entirely mine.

This article first appeared in Hakai Magazine and is republished here with permission. Read more stories like this at hakaimagazine.com.

The post Dog’s are a human’s best friend—and a shorebird’s worst enemy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Chronic wasting disease is sickening deer and elk. Could predators help? https://www.popsci.com/environment/deer-elk-chronic-wasting-disease/ Fri, 07 Apr 2023 01:00:00 +0000 https://www.popsci.com/?p=532205
Chronic wasting disease has now been documented in 30 states from Texas to New York.
Chronic wasting disease has now been documented in 30 states from Texas to New York. DepositPhotos

In the Rockies, the disease can devastate herds; scientists are looking for solutions.

The post Chronic wasting disease is sickening deer and elk. Could predators help? appeared first on Popular Science.

]]>
Chronic wasting disease has now been documented in 30 states from Texas to New York.
Chronic wasting disease has now been documented in 30 states from Texas to New York. DepositPhotos

This article originally published on High Country News.

Justin Binfet, a biologist with the Wyoming Game and Fish Department, strode down a sagebrush-covered hill in the Deer Creek Range of central Wyoming, his phone in his hand. The mid-June sun beat down as the wind picked up. Binfet hopped across a clear, rocky creek and climbed hundreds of feet up the opposite ridge. He stopped occasionally to course-correct after checking his phone, which showed dozens of dots on a map, indicating that a mountain lion had been hanging out near the area. A female lion usually sticks around for one of two reasons: She’s made a den and has kittens, or she killed something big and is taking her time dining. 

Binfet hoped for the latter. Wind and hot sun can make quick work of a carcass, so he didn’t dawdle.  

He and a few other biologists had fitted the wild cat with a GPS collar 18 months earlier so they could track her movements. Her collar collected her location every three hours, and the data was sent to a satellite daily. A complicated algorithm analyzed those pings and alerted the scientists if the lion had likely killed something. 

Binfet reached the top of the ridge, where sagebrush flowed into a few robust junipers that abutted the limestone bluffs above him. His truck sat far below along the vague two-track we’d driven in on, the only sign of humans for miles.

“I’m looking for a kill in some pretty open stuff,” Binfet said. 

Minutes later, he found it: the remains of an elk calf, baking in the sun a few feet away from a juniper as tall as a house. Binfet wanted to know whether a lion had killed this calf, and if so, whether the calf was infected with chronic wasting disease, or CWD, when it died.

Tufts of fur were buried in a bed of needles and duff beneath the tree — signs of a lion cache. The only way to tell if the calf had been infected was to examine its lymph nodes, which Binfet hoped hadn’t yet decomposed into slime. He turned to the calf, stretched blue surgical gloves over his hands and set to work, using a scalpel to dissect the several-day-old carcass that was already melting into the earth. 

Do mountain lions influence how the disease moves among other wildlife?

Any information gleaned from it would provide one small piece of a much greater puzzle — the question of whether, and how, predators affect the spread of CWD, a disease that kills every animal it infects. Binfet’s work was part of a study he’s helping to lead, to figure out if lions select their prey from the sick and weak — as many people assume — or if they choose stronger and healthier individuals, just like human hunters do. In short, do mountain lions influence how the disease moves among other wildlife?

To find out, biologists have tracked, darted and collared 26 mountain lions, then used the information to find and sift through the freshly killed carcasses of their prey. Other researchers collared newborn fawns and are tracking their movements until adulthood. Now the scientists are trying to use all this data to better understand how chronic wasting disease operates across a vast landscape and multiple species. It’s not easy. Lions don’t want to be darted and collared and often give biologists the slip. Collars stop working, complicated algorithms don’t always spit out accurate kill locations, and sometimes those locations come with a lion and kittens unhappy to see human intruders. Even when scientists can locate the lions’ prey, dead animals don’t stay fresh enough for valid disease samples in the 90-degree heat for long. That day in the field, Binfet found maggot-filled mush instead of lymph nodes.  

And then there are humans. State regulations permit unlimited mountain lion hunting in parts of central Wyoming. One winter morning, Binfet loaded GPS locations for each of the study’s collared lions onto his laptop before heading into the field. One collar — and the lion it belonged to — turned up east of Casper, off Interstate 25, in the parking lot of the Hat Six Travel Center. Likely in the back of a truck. 

Technically speaking ,chronic wasting disease is a form of transmissible spongiform encephalopathy. The condition results from microscopic misfolded proteins called prions, which cause other proteins to mutate into prions as well. This buildup of mutated proteins eventually kills cells and leaves holes in an animal’s brain, making it look like Swiss cheese under a microscope. All infected individuals die. Most wither or waste away, though because the disease slows reaction time and movements, some are hit by cars or killed by predators first. No cure exists.

CWD isn’t caused by a virus or bacteria, so it can’t be combated by antivirals or antibiotics. There’s no vaccine. The prions that cause it stick to metal, particularly stainless steel, and can only be destroyed by being doused in lye, soaked in bleach or heated to temperatures greater than 900 degrees Fahrenheit. 

Researchers first recognized the symptoms of CWD in 1967, in captive Colorado mule deer. Years later, it appeared in wild herds in southeast Wyoming. No one knows how it started or where, exactly, it came from. Since then, the disease has crept from county to county, state to state, region to region. It has leapt to Pennsylvania and even South Korea through imported captive elk and deer. CWD has now been documented in 30 states from Texas to New York. In the West, it was most recently identified among wild deer in Montana, in 2017, and Idaho in 2021.

CWD infects deer, elk and, occasionally, moose. Other species have their own variations: Mad cow disease, for example, affects cattle and made headlines after people ate infected meat and developed a deadly variant of the disease in the United Kingdom in the ’90s. CWD has never been documented in humans, but scientists worry about the possibility of a similar transmission through eating meat from a sick animal. The most well-known prion disease that affects humans, Creutzfeldt-Jakob disease, is also incurable and fatal. As a precaution, the Centers for Disease Control and Prevention tells hunters not to eat animals that test positive for CWD. Most state wildlife agencies, including the Wyoming Game and Fish Department, offer free testing for animals killed by hunters, and some states and hunting areas either require or strongly encourage it. Right now, however, the main consequence of the disease is its devastating impact on wildlife herds.

Scientists largely agree that once CWD is established in a herd, it likely can’t be eradicated. What researchers don’t know is how to stop it. 

The best way to control the disease may be to slow its spread, wrote biochemist Sandra Pritzkow in a 2022 review paper published in the journal Viruses. CWD moves in part through feces, urine and infected carcasses, which deposit mutated proteins in the soil, where the prions remain infectious for years. In addition, CWD prions bind to plants, and might even be transmitted by earthworms as they inch through dirt. Prions also shed through saliva and nose-to-nose contact, which is how gregarious deer and elk say hello. 

“What do you do when a disease gets to be endemic?” 

It’s unclear whether animal-to-animal contact or environmental contamination is the bigger problem. But little can be done about prions lurking in the soil. So, one of the most promising — and practical — ideas involves thinning wild herds to keep animals from commingling and spreading the disease. Wyoming and Montana have tried issuing more hunting licenses in order to decrease the density of deer in certain areas. 

Another option is to allow more hunting by other predators, such as wolves, bears or lions. But humans have reduced predator numbers since pre-colonial times. It’s possible that boosting or restoring predator populations — no matter how counterintuitive it may seem — could help bolster deer numbers. A small-scale study in Colorado published in 2010 suggested that lions may prefer to prey on infected deer, but Binfet and others are diving deeper, tracking more lions and collaring deer and fawns in order to better understand whether predators can help or hinder CWD spread.

“What do you do when a disease gets to be endemic?” asked Rhiannon Jakopak, a research scientist with the University of Wyoming who is studying how CWD moves among mule deer. “Do you just watch the herd decline? Or do you try to tinker with it a little bit?” 

Jakopak and a technician named Erika Schwoyer stood on top of Chalk Mountain, a bluff in central Wyoming about 50 miles from Binfet’s elk carcass. They moved quietly, closing the doors of their truck with barely more than a click. Like Binfet, they had a signal to follow. Unlike Binfet, they hoped to find the animal or animals associated with it alive. 

The two researchers whispered to each other as they pulled an H-shaped radio receiver and binoculars out of their backpacks and jammed in sampling test kits — plastic bags full of syringes, vials and other gear. Then they picked their way over to a clump of pine trees near a pile of sandstone rocks. Schwoyer held the receiver in the air, hoping for a ping, but no sounds broke the stillness of the unusually windless day. 

A deer had given birth in the area the night before, and in the process had dropped a small plastic and metal vaginal implant transmitter that biologists had inserted in the spring. When the transmitter hit the ground, it sent a signal that triggered a satellite, which sent an email to Jakopak. An ultrasound performed in the field had shown that the doe was pregnant with twins, and the researchers needed to find the fawns and collar them before the spindly-legged creatures ran away. 

Newborn fawns’ best defense against predators is to hide and stay absolutely still. But, if scared enough, they will flee; Jakopak once watched a less than half-a-day-old fawn race away across a swampy field. 

Jakopak wanted to know if infected mothers pass CWD to their fawns at birth or shortly after, or whether some fawns escape the disease completely. If they aren’t infected, she wondered, why not?

We scrambled down the rocky hillside, pausing every few minutes to listen for pings from the dropped transmitter and scan the sagebrush-covered valley below. Jakopak has spent years searching Wyoming’s mountains and plains for baby animals. She knew the fawns would be impossible to see from a distance, so she watched for movement from the mother; the newborns would be nearby. 

Midway down the hill, we heard the firstping. The tempo of the receiver’s “beep, beep, beep” began to speed up as we reached the valley below, indicating that the transmitter was close. Moments later, Schwoyer found it in a patch of green grass. 

Now the search became even trickier and more urgent. We hadn’t spied the mother, which meant the fawns were either hiding or had taken off, likely never to be found. Then Jakopak waved to us and pointed to the ground a couple of yards away.

We scrambled down the rocky hillside, pausing every few minutes to listen for pings from the dropped transmitter and scan the sagebrush-covered valley below.  

Curled up in an almost perfect circle was a tiny brown fawn marked with white spots. She lay motionless in a divot next to a knob of sagebrush — out in the open, yet completely camouflaged. She barely breathed; even her wide-open eyes stayed still.

Jakopak gently wrapped her hands around the fawn, its legs shooting out in all directions in a last-ditch attempt to escape. She carefully wrangled the spidery limbs, then placed the baby in a gray cloth grocery bag and hooked the bag’s handles to the bottom of a scale. 

“Eight pounds,” she said to Schwoyer, who noted the weight on a clipboard. Jakopak scooped the fawn out of the bag and placed her back on the ground, keeping her hand gently on the newborn’s chest so she couldn’t run away. 

Schwoyer wrote down the length of the deer’s body and the bottom section of one of her back legs as Jakopak called out the measurements. Jakopak filled several vials with blood for potential CWD testing later. (A blood test for CWD is currently awaiting USDA approval.) Finally, she wriggled an elastic GPS collar around the fawn’s neck. As the deer grows, thin pieces of thread constraining the collar will break, allowing it to expand so researchers can track the fawn to adulthood. A battery pack attached to the GPS unit may last for upwards of nine months. If either dies — the battery or the fawn — a satellite will email Jakopak, letting her know. 

While Binfet and his team concentrate on lions, Jakopak focuses on deer. She isn’t sure how much predators curb the spread of CWD, but she knows any reduction means more time to find a cure or a better management strategy. Even a small difference, she said, could be important — saving just one deer from this awful disease would be worth it.

“You can tell when they have died from CWD,” she said, though she noted that a formal diagnosis requires lab testing. “It looks like they were standing and pushed over, but pushed over by nothing. Sometimes they get scavenged, and your heart sinks. You can see their ribs sticking out, and hipbones. They look like they were skin and bones, and they toppled over.”

Jakopak is especially interested in the fawns’ teenage years. Males tend to wander off by nine months or so, while females might roam around a little before settling somewhere nearby. Ecologists rarely focus on this period — after the fawns have left their mom and before they settle — but it could be critical in understanding CWD contagion. During this time, young deer likely interact with other family units or even join different herds, exchanging saliva — and possibly CWD. That kind of contact, along with time in new environments, are prime opportunities for spreading disease. But researchers don’t know exactly where teenage fawns go.

“That’s one of the missing pieces,” Jakopak said.

She’s also tracking how and why the fawns or their moms die. They’ve collared 68 adult female deer so far and lost nearly a third of them. Of those that died and have been tested, 11 had confirmed CWD; eight died from it, while predators killed the other three. Still, CWD likely contributed to their deaths, Jakopak said. One was killed by a coyote, which rarely kill adult mule deer.

Once the fawn was collared, Jakopak returned her to the notch where she’d found her. The fawn pressed herself into the ground, then stilled.

“Science is so incremental,” Jakopak said. “We’re trying to control for as much as we can and explore one little piece of the puzzle. And, hopefully, after someone’s entire career, we might have the bottom left corner.”

In midwinter, Binfet, riding shotgun in a small white pickup, bumped down a winding dirt road in the central Wyoming’s Deer Creek Range. Snow-covered red clay, sagebrush and junipers surrounded the truck, and a few deer bounded up a nearby hill. Binfet was looking for a collared mountain lion whose GPS signal kept fading in and out. The truck’s driver, Ryan Rohrer, who owns a large ranch in the area, talked about his appreciation for lions — unlike most Wyoming ranchers, who generally loathe the large predators, partly because they occasionally kill livestock, mainly sheep. 

“Mountain lions are one of the coolest creatures on the landscape, in my opinion,” he said. “They’re just so elusive, and it’s a 150-pound athlete that makes a living off killing things four times its size, you know? And you never see them. They’re just — they’re just super cool.”

Rohrer has never had issues with lions eating his cattle or horses. In early February, in fact, a collared female spent a few days behind his horse barn, near 300 weaned calves. Rohrer’s horses were there, too, eating hay. The cat killed a deer and a skunk but left the livestock alone. Perhaps, he said, mountain lions don’t need domestic animals in an area with such a rich supply of wild food.

So when Binfet called Rohrer a couple of years ago asking if he could study lions on his land, Rohrer agreed. Much of the West — more than 600 million acres, including roughly half of Wyoming — is public, but everything else is private. That means researchers often need the cooperation of private landowners to get much done. 

For most of Binfet’s career, he managed deer herds with CWD. About a dozen years ago, he worked on a project testing deer from a herd just south of Douglas, Wyoming, for the disease. The head researcher, Melia DeVivo, later published a paper suggesting that the herd could decline by as much as 50%. One worst-case scenario predicted that CWD, if left unchecked, could wipe it out completely. Today, the herd is relatively stable, but still just half the size that the Wyoming Game and Fish Department believes the landscape can support.

DeVivo also noted that 20 of the deer in the study with CWD were killed by mountain lions, making the big cats the primary source of mortality for CWD-positive deer. Binfet wondered if he could use the ponderosa- and juniper-covered rolling mountains of central Wyoming to measure the impact of predators on deer numbers in an area already saturated with the disease. Members of the public tended to call for killing predators whenever deer numbers waned, but in the presence of CWD, that might only worsen the situation. Binfet also wanted to know if anecdotal stories about lions and coyotes avoiding the carcasses of deer killed by CWD were true, or just that — stories.

So he sat down with a Game and Fish large-carnivore biologist, Justin Clapp, to develop the current project: a plan to spend almost four years tracking dozens of mountain lions to see what’s on their menu. 

Early one morningmy phone buzzed with a message from Jakopak. We were supposed to meet for coffee to discuss how many fawns in the study had died, among other topics. But at the last minute, she emailed to say she had tested positive for COVID-19. Her housemates had been sick for the last 10 days. She’d quarantined with them, testing negative for the duration, then woken up sick. It didn’t make sense. But the last three years of this pandemic have demonstrated how confounding diseases can be, and how much can remain unknown — even after years of global efforts.

The Wyoming study hopes to address some of CWD’s unknowns. But even so, it’s unclear what wildlife officials will do with the data. Would they be willing to impose lion-hunting quotas in an area where the culture is steeped in anti-predator ideologies?

Potentially, said Dan Thompson, the Game and Fish Department’s large carnivore section supervisor, if the data is clear enough. “We’re open to what we will learn from this study,” he said. “I think it would only make sense if the results suggest there’s something we can do from the lion perspective that would be beneficial for mule deer.

“A lot of people are using the predation standpoint for their agendas. Some groups say predation will fix everything and some say predators ruin everything, and until we have answers that are well quantified, we’re playing the middle game.”

Regardless, every sample or drop of blood taken by Jakopak, Binfet and others will add to the growing body of work on CWD from across the world. 

“Some groups say predation will fix everything and some say predators ruin everything, and until we have answers that are well quantified, we’re playing the middle game.”

It’s also possible that modern wildlife managers have been looking at this in the wrong way from the beginning, said Jason Baldes, an Eastern Shoshone tribal member and executive director for the Wind River Tribal Buffalo Initiative. “In Western thought, we silo everything and think it should be broken down in pieces,” Baldes said. “But when you look at it whole, it’s not siloed. It’s one system together.”

Imagine if the pieces of this particular puzzle had never been scattered by CWD. If the predators that keep herds healthy by weeding out the sick had never been removed, Baldes said, this terrible disease, with its unknown origins, might never have had the chance to spread.

That’s partly why tribal nations like the Eastern Shoshone traditionally didn’t allow predator hunting on the reservation — though there is currently a hunting season for lions — and why tribal leaders continue to oppose hunting grizzly bears and wolves. It’s also why Baldes and others are working so hard to restore the buffalo. Only a complete ecological system can ensure that all species have a chance against threats like disease and even climate change. 

“We can’t continue to think we have an answer when we don’t look at it holistically,” Baldes said. 

A pair of blue tick hounds ran across lion tracks in the snow as the sun cracked the horizon on a late January morning, north of where Binfet sorted through the elk calf carcass. The dogs followed the big cat for miles over sandstone boulders, up hills and down ridgelines, across a road and a bridge and then yet more hills.

Their human handlers watched the dogs’ progress on GPS trackers. The crew of Wyoming state biologists wanted to get a collar on the lion so they could add its movements — and its dining habits — to the study. 

Barking and howling erupted in the distance. Minutes later, the handlers hiked up a ridge and found the source: The dogs had treed the lion on a thumb of rock about halfway down a 400-foot precipice, hanging above a frozen river. 

The lion had careened down a narrow, steep couloir etched into the side of the cliff, then skirted an impossibly small ledge to reach a lone ponderosa growing from a crevice in the rock. The dogs followed. There all three remained for almost an hour. Then, in a flash of fur and claws, the lion bailed from the tree and streaked back along the ledge with the dogs in pursuit. One grabbed the lion’s neck in its mouth. The lion spun around, planted her teeth in the hound’s face, and the two began to roll. 

The crew at the top of the cliff — now including a search and rescue team the biologists had called to help the dogs — gasped and watched, helpless.

Somehow the animals separated and made it to the bottom of a gully, where the lion flew into another ponderosa and the dogs once again waited below. 

The lion’s clear blue eyes remained fixed on the humans at the top of the rim, unblinking. 

It was late afternoon now, and the sun was sinking. The rescuers decided to rappel down the cliff, fit the dogs in cloth slings and winch them back up. The lion, the biologists decided, would not be sedated and collared after all; it was too close to dark. She would go free, untraceable. 

Minutes later, the dogs safely back with their human companions, she fled. 

In late March, small latches in the remaining lion collars unclicked, and the collars dropped to the ground. The lions will once again fade into shadows and tracks, rarely seen by humans — another piece in the very large puzzle of a disease that won’t stop moving.  

The post Chronic wasting disease is sickening deer and elk. Could predators help? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Antarctic ice can melt 20 times faster than we thought https://www.popsci.com/environment/antarctic-ice-sheet-melt-faster/ Thu, 06 Apr 2023 20:00:00 +0000 https://www.popsci.com/?p=532357
Icebergs over the ocean in Greenland.
Greenland and Antarctica have lost more than 6.4 trillion tons of ice over the past three decades. Deposit Photos

A new study of one of the biggest ice sheets from the last Ice Age contains a warning for our warming world.

The post Antarctic ice can melt 20 times faster than we thought appeared first on Popular Science.

]]>
Icebergs over the ocean in Greenland.
Greenland and Antarctica have lost more than 6.4 trillion tons of ice over the past three decades. Deposit Photos

Melting ice sheets in Antarctica can retreat much faster than scientists previously thought. A study published April 5 in the journal Nature found that at the end of the last Ice Age, parts of the Eurasian Ice Sheet retreated up to 2,000 feet per day. This rate is 20 times faster than previous measurements. These changes far outpace even the fastest-moving glaciers studied in Antarctica, which are estimated to retreat as quickly as 160 feet per day. 

The new findings could be crucial to better understanding today’s ice melt.

The Eurasian Ice Sheet was the third-largest ice mass during the last Ice Age and retreated from Norway about 20,000 years ago. At its largest, it had a span of almost 3,000 miles. Mirroring these retreats are ice sheets on Greenland and Antarctica, which have lost more than 6.4 trillion tons of ice over the past three decades. Both of these modern-day ice sheets are responsible for more than one-third of total sea level rise

“Our research provides a warning from the past about the speeds that ice sheets are physically capable of retreating at,” Christine Batchelor, study co-author and physical geographer from Newcastle University, said in a statement. “Our results show that pulses of rapid retreat can be far quicker than anything we’ve seen so far.”

[Related: We’re finally getting close-up, fearsome views of the doomsday glacier.]

For this study, an international team of researchers used high-resolution imagery of the seafloor to see how the ice sheet changed over. They mapped out more than 7,600 small-scale landforms called “corrugation ridges” on the seafloor around where the ice sheet once stood. The ridges are less than eight feet high and are spaced around 82 to 984 feet apart. These types of ridges are believed to have formed when the ice sheet’s retreating margin moved with the tide. Seafloor sediments are pushed into a ridge every low tide, so two ridges would have been produced during two daily tidal cycles. The spacing helped the team calculate the enormous speed of retreat. 

This kind of data on how ice sheets reacted to past periods of warming can help inform computer simulations which predict future ice-sheet and sea-level change. It also suggests that these periods of rapid melt may only last for days to months, which are relatively short periods of time from a geologic standpoint. 

“This shows how rates of ice-sheet retreat averaged over several years or longer can conceal shorter episodes of more rapid retreat,” study co-author and University of Cambridge glaciologist Julian Dowdeswell said in a statement. “It is important that computer simulations are able to reproduce this ‘pulsed’ ice-sheet behavior.”

[Related: Ice doesn’t always melt the same way—and these visuals prove it.]

Understanding these seafloor landforms also showcases the mechanics behind rapid ice retreat. The study found that the former ice sheet retreated most across the flattest point of its bed where, “less melting is required to thin the overlying ice to the point where it starts to float,” explained co-author and Cambridge glacial geophysicist Frazer Christie from Scott in a statement. “An ice margin can unground from the seafloor and retreat near-instantly when it becomes buoyant.”

The team believes that pulses of similarly quick retreat could soon be observed in some parts of Antarticia, including West Antarctica’s vast Thwaites Glacier. Nicknamed the “Doomsday Glacier,” Thwaites could undergo a similar pulse of rapid ice retreat since it has recently retreated close to a flat area of its bed.

“Our findings suggest that present-day rates of melting are sufficient to cause short pulses of rapid retreat across flat-bedded areas of the Antarctic Ice Sheet, including at Thwaites,” said Batchelor. “Satellites may well detect this style of ice-sheet retreat in the near-future, especially if we continue our current trend of climate warming.”

The post Antarctic ice can melt 20 times faster than we thought appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Caribbean coral is getting sick and dying. A probiotic could help. https://www.popsci.com/environment/coral-probiotic/ Thu, 06 Apr 2023 14:00:00 +0000 https://www.popsci.com/?p=532114
A close-up of extended polyps of an apparently healthy great star coral colony on a reef near Fort Lauderdale, Florida. The tentacles surrounding the mouth of each polyp help trap food particles for the coral to eat.
A close-up of extended polyps of an apparently healthy great star coral colony on a reef near Fort Lauderdale, Florida. The tentacles surrounding the mouth of each polyp help trap food particles for the coral to eat. Valerie Paul

Stony coral tissue loss disease (SCTLD) can kill a colony coral polyps in only a few weeks once infected.

The post Caribbean coral is getting sick and dying. A probiotic could help. appeared first on Popular Science.

]]>
A close-up of extended polyps of an apparently healthy great star coral colony on a reef near Fort Lauderdale, Florida. The tentacles surrounding the mouth of each polyp help trap food particles for the coral to eat.
A close-up of extended polyps of an apparently healthy great star coral colony on a reef near Fort Lauderdale, Florida. The tentacles surrounding the mouth of each polyp help trap food particles for the coral to eat. Valerie Paul

Discovered in 2014, stony coral tissue loss disease (SCTLD) has rapidly spread in the warm waters of the Caribbean. The mysterious ailment that targets hard corals has harmed more than 22 species of stony corals in Florida, the U.S. Virgin Islands, and Puerto Rico. Cases have been confirmed in at least 20 other countries and territories. A 2022 study of the coral species Pseudodiploria strigosa estimated a between 60 and 100 percent mortality rate in the Caribbean alone. 

While the precise cause is unknown, scientists are working to develop effective treatments. In a study published April 6 in the journal Communications Biology, a team of scientists describes the first effective bacterial probiotic for treating and preventing SCTLD. Using a probiotic provides an alternative to using the broad-spectrum antibiotic amoxicillin. So far, using amoxicillin has only been proven to treat the disease, and also runs the risk of promoting antibiotic-resistant bacteria.

[Related: Disease-resistant super corals can save vulnerable reefs.]

Once coral is infected with SCTLD, its colony of polyps can die within only a few weeks. “It just eats the coral tissue away,” Valerie Paul, co-author of the study and a marine biologist and chemical ecologist at the Smithsonian Marine Station at Fort Pierce, Florida, said in a statement. “The living tissue sloughs off and what is left behind is just a white calcium carbonate skeleton.”

While probing how the disease spreads, Paul and a team noticed that some fragments of great star coral (Montastraea cavernosa) quickly developed SCTLD’s characteristic lesions and died, while other pieces didn’t get sick at all. While the precise cause of the disease is unknown, pathogenic bacteria was a suspected culprit in the disease’s progression, since antibiotics were an effective treatment for the disease.

With this in mind, the team collected samples of the naturally occurring, non-pathogenic bacteria present on a pair of disease-resistant great star coral fragments. After testing the samples, the team tried to identify if there were any naturally occurring microorganisms protecting some great star corals from the SCTLD.     

The team used three strains of harmful bacteria from corals that had previously been infected to further test 222 bacterial strains from the disease-resistant corals. While they found that 83 strains that had some antimicrobial activity, a strain named McH1-7 particularly stood out. Further chemical and genetic analysis of McH1-7 confirmed the compounds behind its antibiotic properties and the genes behind those compounds.

[Related: Scientists grow stunning, endangered coral in a lab.]

When they tested McH1-7 with live pieces of great star coral, the tests revealed a final piece of decisive proof: McH1-7 stopped or slowed the progression of the disease in 68.2 percent of the 22 infected coral fragments. It even prevented the sickness from spreading during in all 12 transmission experiments.  

Ocean photo
A close look at a piece of diseased great star coral that is cut and ready for testing and treatment in an aquarium. The white coral skeleton on the left shows where two coral polyps have already died from SCLTD. CREDIT: Kelly Pitts.

Some next steps for the team are to develop better delivery mechanisms to use this probiotic method at scale in the ocean. The primary method of applying this coral probiotic now is to wrap the coral in plastic to create a makeshift mini aquarium and then inject the helpful bacteria, which would not be feasible on a large scale. It is also not clear if this bacterial strain isolated from the great star coral will have the same effects for other coral species.

To the team, it is still a welcome bit of news, as it could help prevent inadvertently spawning an antibiotic resistant bacteria and help corals in an ever changing climate.  “Between ocean acidification, coral bleaching, pollution and disease there are a lot of ways to kill coral,” Paul said. “We need to do everything we can to help them so they don’t disappear.”

The post Caribbean coral is getting sick and dying. A probiotic could help. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This is how bad a ‘super pig’ problem can really get https://www.popsci.com/environment/canada-invasive-super-pig-problem/ Tue, 04 Apr 2023 01:00:00 +0000 https://www.popsci.com/?p=524894

Researchers are trying to figure out how to best mitigate the spread of wild pigs in Canada.
Researchers are trying to figure out how to best mitigate the spread of wild pigs in Canada. Canadian Wild Pig Research Project

A cross between domestic pigs and wild boars has managed to establish itself in the wild in Canada. And the population is exploding.

The post This is how bad a ‘super pig’ problem can really get appeared first on Popular Science.

]]>

Researchers are trying to figure out how to best mitigate the spread of wild pigs in Canada.
Researchers are trying to figure out how to best mitigate the spread of wild pigs in Canada. Canadian Wild Pig Research Project

This article was originally featured on Field & Stream.

In January, Field & Stream reported on a startling population explosion of invasive pigs in Canada’s Praire Pothole Provinces. According to Dr. Ryan Brook, the leader of the University of Saskatchewan Canadian Wild Pig Research Project, the swine are blends between wild and domestic pigs prompting him to call them “super pigs.” After escaping or being released from enclosures, the pigs have managed to thrive despite the cold climate—and are threatening to invade the northern U.S.

Related: Colombia Struggles to Control Exploding Population of Over 100 Invasive Hippos

Dr. Brook recently spoke at length with Field & Stream about his research and the vast array of worrying consequences the feral hog proliferation could have. But sometimes you just have to see it to believe it. These charts from the Canadian Wild Pig Research Project illustrate the shocking invasion happening up north right now.

A Nation-Wide Incident Map

Canada’s invasive pig problem is relatively recent, unlike the one in the southeast U.S. Before 1995, there were hardly any occurrences of feral pigs. That all changed when the market for farmed boars dropped out in the early 2000s. This short video shows a contagion of red indicating wild pig sightings quickly spreading throughout Canada in the last 30 years.

A More Detailed Map

Pinpointing populations of invasive pigs is paramount to mitigating their spread. That’s why Dr. Brook and his team recently put together a detailed map of wild pig occurrences in Canada. “[The] reality is still that outside of the Prairie Provinces of Alberta, Saskatchewan, and Manitoba, there are no meaningful opportunities to hunt wild pigs, which is not allowed in Ontario and Quebec,” wrote the Canadian Wild Pig Research Project in a Facebook post. “There are a little over 54,000 points here—more than half in Saskatchewan.”

map showing pig invasion in Prairie Provinces of Canada
Each red dot indicates a pig occurrence. Canadian Wild Pig Research Project

City Pigs?

Dr. Brook is currently tracking a population explosion of “super pigs” in close proximity to Edmonton. Could feral pigs invade the city itself? Hopefully not. But there has already been one occurrence within city limits, and another right on the outskirts. “Please tell me that we won’t have wild pigs in Canadian cities,” wrote Dr. Brook in a Tweet.

some pig sightings near Edmonton
This map shows wild pig occurrences in the area as of 2003. Canadian Wild Pig Research Project
map showing increased pig sightings
Ten years later, in 2013, sightings in the area exploded. Canadian Wild Pig Research Project
Even more pigs near Edmonton
By 2023, invasive pigs had firmly established populations near Edmonton. Canadian Wild Pig Research Project

Super Pigs Caught on Camera

Dr. Brook and his team rely on a network of trail cameras and reports from citizens to track the spread of wild hogs in Canada. This has helped them get an idea of where they like to be—and it’s no surprise that they often gravitate to farms. “If you are looking for wild pigs these days, remember that corn is king,” wrote the Canadian Wild Pig Research Project in a Facebook post.” If there is any standing corn crop in areas that have wild pigs, then that’s a good first place to look. The amount of standing corn left for winter cattle grazing has increased in many areas and pigs really like it. Corn provides great hiding cover and food value.”

pigs near corn crops at night
These pigs were likely pilfering corn under the cover of night. Canadian Wild Pig Research Project

The Final Word on Canadian Super Pigs

These graphics all illustrate an unfortunate reality: Invasive pigs have successfully managed to establish populations in Canada, particularly in Manitoba and Saskatchewan. And they’re there to stay. According to Dr. Brook, total eradication is no longer possible—but preventing the spread of Canadian super pigs is still important. People in Canada and the northern U.S. should report any sightings of feral pigs to their local conservation officers and to the Squeal on Pigs program.

The post This is how bad a ‘super pig’ problem can really get appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
After 50 years in captivity, Lolita the orca may be freed https://www.popsci.com/environment/lolita-orca-killer-whale-free/ Fri, 31 Mar 2023 13:00:00 +0000 https://www.popsci.com/?p=524490
Lolita the killer whale performing its 40th anniversary performance at Miami Seaquarium.
Lolita the killer whale performing its 40th anniversary performance at Miami Seaquarium. Jeff Greenberg/Universal Images Group via Getty Images

She was captured from Puget Sound in 1970 and is believed to be the oldest orca whale in captivity.

The post After 50 years in captivity, Lolita the orca may be freed appeared first on Popular Science.

]]>
Lolita the killer whale performing its 40th anniversary performance at Miami Seaquarium.
Lolita the killer whale performing its 40th anniversary performance at Miami Seaquarium. Jeff Greenberg/Universal Images Group via Getty Images

Over half a century since she was captured in the Pacific Ocean near Puget Sound, Lolita the Orca may return to her home waters. Lolita, also known by her Lummi name Tokita or Toki, was captured in Penn Cove off the coast of Washington State in 1970 when she was roughly 4 years old. She is believed to be the oldest orca in captivity.

The Miami Seaquarium in Florida announced its plans to move Lolita home at a press conference with nonprofit group Friends of Lolita and philanthropist and owner of the NFL’s Indianapolis Colts, Jim Irsay, on March 30. The move comes after growing pressure from animal rights groups, lawsuits from groups like People for the Ethical Treatment of Animals (PETA), and anger and possible lawsuits from the Lummi Nation.

[Related: A baby orca sparks a glimmer of hope for an endangered group of whales.]

Irsay did not say how much the relocation would cost, only citing a “big number.” 

“I’m excited about being part of Lolita’s journey,” Irsay told reporters, according to NPR. “Ever since I was a little kid I’ve loved whales, just loved whales because [of] the power, the greatness of them and how gentle they are. She’s lived this long to have this opportunity and my only mission … is to help this whale to get free.”

While this is welcome news, many obstacles remain, particularly the logistics of transporting the ailing 7,000 pound whale from Florida up to Washington State, as well as preparing the 57-year-old to live back in the wild after living in captivity for over 50 years. 

According to the Miami Herald, the goal is to place Lolita back in the sea and reunite her with her family, the L pod of southern resident orcas. This unique group of orcas spend the summer and autumn months in Puget Sound and were added to the endangered species list in 2005. Their population has “fluctuated considerably” since the 1970s, with pods “reduced during 1965-75 because of captures for marine parks,” according to NOAA Fisheries

“If she is healthy enough to be transported, the issue is her skill set,” Miami-Dade Commissioner Raquel Regalado, who has been an advocate for Lolita and improvements at Seaquarium, told the Herald. “She doesn’t know how to catch or hunt. We’re not really sure if she can communicate with other whales because she’s been alone. Now we kind of have to retrain her.” 

The team will likely borrow methods used to move Keiko, the orca from the 1993 movie Free Willy. Keiko was moved from a tank at a marine park in Mexico to an aquarium in Oregon, and then on a US Air Force cargo plane to a sea pen in Iceland. Keiko eventually swam to Norway and lived in the ocean for five years. He died of pneumonia in 2003.

[Related: California Bans Captivity, Breeding Of Orcas.]

MS Leisure, who owns the Miami Seaquarium, announced in March 2022 that Lolita, who had fallen ill, would no longer be put on display for shows in the whale stadium. In June 2022, an assessment from two veterinarians not affiliated with the seaquarium found that Lolita’s condition had improved. 

She now lives in an 80-foot-long by 35-foot-wide by 20-foot-deep tank, which inspectors from the US Department of Agriculture have closed to visitors until the stands and tank are repaired.

Some animal rights activists hailed the decision as a long time coming and hope other marine parks follow suit. 

“If Lolita is finally returned to her home waters, there will be cheers from around the world, including from PETA, which has pursued several lawsuits on Lolita’s behalf and battered the Seaquarium with protests demanding her freedom for years,” the PETA Foundation’s vice president and general counsel for animal law Jared Goodman, said in a statement.  “If the Seaquarium agrees to move her, it’ll offer her long-awaited relief after five miserable decades in a cramped tank and send a clear signal to other parks that the days of confining highly intelligent, far-ranging marine mammals to dismal prisons are done and dusted.”

The post After 50 years in captivity, Lolita the orca may be freed appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How conserving wild beasts like wolves and otters could help with carbon capture https://www.popsci.com/environment/sequester-carbon-save-wild-animals/ Tue, 28 Mar 2023 01:00:00 +0000 https://www.popsci.com/?p=523262
Robust populations of just nine species, such as sea otters or gray wolves, or genera, including whales, could drastically reduce carbon.
Robust populations of just nine species, such as sea otters or gray wolves, or genera, including whales, could drastically reduce carbon. DepositPhotos

Gray wolves, elephants, wildebeests, and sea otters are a few of the species that can help keep global warming below 1.5 degrees C.

The post How conserving wild beasts like wolves and otters could help with carbon capture appeared first on Popular Science.

]]>
Robust populations of just nine species, such as sea otters or gray wolves, or genera, including whales, could drastically reduce carbon.
Robust populations of just nine species, such as sea otters or gray wolves, or genera, including whales, could drastically reduce carbon. DepositPhotos

This article was originally featured on Grist.

As the world increasingly turns toward natural climate solutions like reforestation and grassland restoration to sequester carbon, it may be overlooking a crucial ally: animals. 

Protecting existing populations and restoring others to their natural habitats often improves the natural capture and sequestration of carbon dioxide within ecosystems, according to a study published today in the journal Nature Climate Change. Robust populations of just nine species, such as sea otters or gray wolves, or genera, including whales, could lead to the capture of 6.41 gigatons of CO₂ annually, the researchers found. That’s about 95 percent of the amount needed to be removed annually to ensure global warming remains below 1.5 degrees Celsius (2.7 degrees Fahrenheit).

In “Trophic rewilding can expand natural climate solutions,” led by the Yale School of the Environment and the Global Rewilding Alliance, 15 international experts compare the carbon content in savannas, forests, and other ecosystems when their wildlife populations were healthy and when they were below historical numbers. They found multiple cases in which thriving populations of certain species, particularly large vertebrates, through acts like foraging, burrowing, and trampling, increased an ecosystem’s carbon storage capacity by as much as 250 percent.

The researchers argue that these essential species disperse seeds, facilitating the growth of carbon-sequestering trees and plants. Others trample or eat the vegetation that would otherwise rob those trees of space and nutrients. Predators prey on herbivores that, without predation, might adversely impact that essential fauna.

“Ecological science has had a long history of overlooking the role of animals as an important driver of the biogeochemistry of ecosystems,” Oswald Schmitz, an ecologist at the Yale School for the Environment and an author of the study, told Grist. “What we say is that we know animals can change the vegetation makeup of ecosystems, and a lot of ecosystem ecologists say vegetation is important for ecosystem function and carbon cycling, then surely the animals must be important, too.” 

According to the study, keeping global warming below 1.5 degrees Celsius above preindustrial levels not only requires reducing fossil fuel emissions but removing around 500 gigatons of atmospheric CO₂ by 2100. Natural solutions, like protecting and restoring forests, wetlands, and grassland ecosystems can help, but such measures, implemented at their current pace, will not do the job in time. Restoring animal populations, or “trophic rewilding,” can accelerate the rates of sequestration and storage in a process called “animating the carbon cycle.”

“Instead of taking 77 years to get that 500 gigatons out, we could actually have that in 35 years,” Schmitz said. “We could do it if we really made a concerted effort to rebuild these populations.”

In Africa, every increase of 100,000 animals in the Serengeti raises the amount of carbon sequestered by 15 percent. Wildebeest are particularly effective allies in the climate fight. More than 1 million of the ungulates migrate across almost 10,000 square miles of savanna. They consume carbon contained in the grasses they eat, then excrete it in their dung. That carbon is then integrated into the soil by insects. They also manage the grasses, mitigating the risk of wildfires. When disease wiped the wildebeest population in the early 1900s, fires grew more frequent and intense, releasing more carbon, transforming the Serengeti from a carbon sink to a carbon source. When the wildebeest population recovered beginning in the 1960s, the Serengeti became a carbon sink again. 

Similar examples exist across a wide range of ecosystems. In the Arctic, herds of caribou and other large animals compact snow, preventing permafrost melt. Whales feed in deep waters and release nutrients in their waste at shallower depths, stimulating the production of phytoplankton, which are essential to fixing carbon in the ocean. The animals also are enormous carbon sinks in their own right.

Yet many of these populations face increasing threats from overfishing, habitat loss, impediments to their migratory patterns, and other risks. Losing these species, or even seeing their historic range or numbers decrease, risks transforming the ecosystems they inhabit from carbon sinks into carbon sources.

While animating the carbon cycle has the potential to be a powerful accelerant of carbon removal, the study’s authors warn that trophic rewilding cannot be done without considering unintended consequences. Gray wolves can help carbon removal in boreal forests because they prey on the moose that browse on carbon-storing trees, but they can hurt carbon stores in grasslands, where they eat the elk that stimulate plant production through their grazing. Increases in populations of large animals can increase methane release, an issue that can be offset by reducing domestic livestock populations, according to the study. 

Balancing livestock and wildlife populations also raises another central consideration of trophic rewilding: its impact on local human populations. Schmitz said the key to successful trophic rewilding programs is to cater them to local conditions and needs.

Bison, which once roamed North America by the millions, could help store huge amounts of CO₂ in grasslands, but cattle ranchers often resist restoration efforts because of the health threats they can pose for cattle. 

“It’s about having people think about themselves as stewards of the land, and we ought to also compensate them for that stewardship,” said Schmitz. “If we would come up with a carbon market that paid the ranchers for the amount of carbon that these bison sequester, they could maybe make more money by being carbon ranchers than they could by cattle ranching.”

What must come first, Schmitz said, is a change in how the global climate community approaches natural carbon solutions. “One of the big frustrations in the conservation game is you’ve got the U.N. Convention on Climate Change, and then you also have the U.N. Convention on Biodiversity, and they don’t talk to each other,” he said. “One is trying to save biodiversity, and the other is trying to save the climate. And what we’re saying is you can do both, with the same thing, in the same space.”

This article originally appeared in Grist at https://grist.org/article/sequester-carbon-save-wild-animals/. Grist is a nonprofit, independent media organization dedicated to telling stories of climate solutions and a just future. Learn more at Grist.org.

The post How conserving wild beasts like wolves and otters could help with carbon capture appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Two newly discovered Andes Mountain plant species have an appetite for insects https://www.popsci.com/environment/andes-mountains-carnivorous-plant/ Mon, 27 Mar 2023 17:00:00 +0000 https://www.popsci.com/?p=523230
Ilinizas Volcanoes under the Quilotoa lagoon in the Andes Mountains in Ecuador. Scientists recently discovered two new carnivorous plant species in the rugged high Andes.
Ilinizas Volcanoes under the Quilotoa lagoon in the Andes Mountains in Ecuador. Scientists recently discovered two new carnivorous plant species in the rugged high Andes. Deposit Photos

'Butterworts' may sound cute, but these plants handle some tough terrain.

The post Two newly discovered Andes Mountain plant species have an appetite for insects appeared first on Popular Science.

]]>
Ilinizas Volcanoes under the Quilotoa lagoon in the Andes Mountains in Ecuador. Scientists recently discovered two new carnivorous plant species in the rugged high Andes.
Ilinizas Volcanoes under the Quilotoa lagoon in the Andes Mountains in Ecuador. Scientists recently discovered two new carnivorous plant species in the rugged high Andes. Deposit Photos

An international team of botanists recently discovered two new species of carnivorous plants in the high Andes of southern Ecuador near the Peruvian border. Both species are described in a study published March 24 in the journal PhytoKeys and part of the butterworts group. This group of about 115 species of flowering plants can catch and digest small insects with their sticky leaves. Carnivorous plants use these animals as an additional food source to compensate for any nutritional deficiencies in the soil they’re growing in.

Eating insects gives these plants a competitive advantage over other plants and helps them thrive in challenging habitats like the tropical high Andes Mountains.

[Related: Meet the world’s newest carnivorous plant.]

The team found Pinguicula jimburensis on the shore of a highland lagoon over 11,000 feet high  and Pinguicula ombrophila on a nearly vertical rock face over 9,000 feet high. The lagoon and rock face are within the Amotape-Huancabamba zone, an area with rugged terrain, a varied climate, and known for exceptional biodiversity due to these conditions. The Amotape-Huancabamba zone makes up large portions of southern Ecuador and northern Peru. 

Botanist Álvaro Pérez of the Pontificia Universidad Católica del Ecuador and his team were the first to discover the plants and worked with study co-author and botanist Tilo Henning from the Leibniz Center for Agricultural Landscape Research (ZALF) in Germany.

Land photo
Photograph of a newly discovered carnivorous plant, Pinguicula ombrophila. CREDIT: Álvaro J. Pérez

“As small and scattered as the species’ suitable habitats are, so is the species composition,” Henning said in a statement. “Both of these new species are only known from a single location, where only a few dozens of plant individuals occur in each case.”

Only one population with about 15 mature individuals was discovered, which makes the species quite vulnerable even if it lives in an isolated and difficult-to-access area. According to the team, this limited distribution is common in the Amotape-Huancabamba zone, and there are many more new plant and animal species awaiting discovery.

Land photo
Photograph of a newly discovered carnivorous plant, Pinguicula jimburensis. CREDIT: Kabir Montesinos

The discovery of these new species triples the number of butterwort species recorded in Ecuador and the team believes that there are more new species awaiting formal scientific recognition, but finding them has been a race against time.

“The results presented in this study show that the assessment of the Neotropical biodiversity is far from complete. Even in well-known groups such as the carnivorous plants, new taxa are continuously discovered and described, in particular from remote areas that become accessible in the course of the unlimited urban sprawl,” the team wrote in the study. “This is both encouraging and worrying at the same time.”

[Related: Scientists just rediscovered a rare, fungi-eating ‘fairy lantern.’]

They cite relentless urban sprawl and habitat destruction that are a massive threat to biodiversity in general, particularly threatening fragile microhabitats like these plants. While the new species are safe from human interference since they grow in protected areas, human-induced climate change is increasingly affecting carnivorous plants and ecosystems, particularly places like mountain wetlands that rely on regular precipitation.

This reliance on precipitation and waterlogged soil is even reflected in the name Pinguicula ombrophila, which means “rain-loving butterwort,” and more research is needed to study how these rare species will continue to fare as the climate changes.

The post Two newly discovered Andes Mountain plant species have an appetite for insects appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Bears can run at surprisingly fast speeds—here’s how they vary by species https://www.popsci.com/environment/how-fast-can-a-bear-run/ Mon, 27 Mar 2023 01:00:00 +0000 https://www.popsci.com/?p=522737
A grizzly bear can run 35 miles per hour.
A grizzly bear can run 35 miles per hour. Don Grall via Pixabay

If you're planning to outrun any kind of bear, it helps to know what you're up against.

The post Bears can run at surprisingly fast speeds—here’s how they vary by species appeared first on Popular Science.

]]>
A grizzly bear can run 35 miles per hour.
A grizzly bear can run 35 miles per hour. Don Grall via Pixabay

This article was originally featured on Field and Stream.

How fast can a bear run? To fully understand, it helps to use this comparison: During a 2009 race in Berlin, Usain Bolt set a world record for the 100-meter dash of 9.58 seconds, a record that stands to this day. In that race, he was clocked going 27.8 mph. (He reached that speed between 60 and 80 meters.) That’s about 4 mph better than his average sprinting speed and 10 mph faster than the average human can sprint. So when you are in a bar and some knucklehead tells you he has $10 that says Bolt could outrun a bear, take that bet. Take it because a grizzly bear can run 35 mph, which, literally, is inhumanly fast. And even a black bear—top speed 30 mph—is faster than the world’s fastest man. 

There’s also this: a sprinter can only maintain top speed for a second or two. A griz, on the other hand, can maintain a speed of 25 to 28 mph for two miles. A black bear is 5 mph slower over that distance but can also keep up the pace. Also—and contrary to some of the myths about bears out there—a bear is just as fast going downhill as up. 

Table of contents

  • How Many Species of Bears Are There
  • How Fast Can a Polar Bear Run? 
  • How Fast Can a Grizzly Bear Run? 
  • How Fast Can a Black Bear Run? 
  • How to Survive a Bear Attack

How many species of bears are there?

All told, there are eight species of bears. After looking at the list below, you might think I left out the koala bear. But it’s classified as a marsupial—it carries its young in a pouch. The word koala comes from the Dharug, an Australian aboriginal language, word gula, meaning no water. Koalas get most of their water from eucalyptus leaves, although they do drink water. Colonists called the creature the koala “bear” because it sort of looks like a bear. But koala—not koala bear—is its proper name. 

The 8 species of bears and their top speeds

  • North American black bear – The most common species in the world. Black bears can run 30 mph. 
  • The Asiatic black bear – Slightly smaller than our black bears and one that lives in trees. Asiatic black bears can run 25 mph. 
  • The brown bear – Of which the grizzly is a subspecies. Brown bears can run 35 mph. 
  • The polar bear – Confined primarily to the Arctic Circle, they are the world’s biggest bear and biggest land-based carnivore. Polar bears can run 25 mph.  
  • The giant panda – Native to China, with a diet almost exclusively of bamboo. Pandas can run 20 mph. 
  • The sloth bear – Native to the Indian subcontinent and feeds on fruit, ants, and termites. Sloth bears can run 20 mph. 
  • The sun bear – The smallest bear, native to tropical forests of Southeast Asia, also arboreal (tree-dwelling). Sun bears can run 30 mph. 
  • The spectacled bear – The only living bear native to South America (the Andes Mountains of western South America, to be exact), primarily a herbivore. Spectacled bears can run 30 mph. 

How fast can a polar bear run? 

Adult polar bear looking at camera
Polar bears can easily out-run and out-swim human beings. 358611 from Pixabay

Polar bear top speed: 25 mph

The biggest bear, and the largest land carnivore, is the polar bear (Ursus maritimus), which lives almost exclusively inside the Arctic Circle. Polar bears have been clocked at 25 mph, but only for short distances. They are big, heavy seal specialists and marvelous swimmers. They would quickly overheat if they sprinted distances. Their normal walking speed is about the same as ours, 3.5 mph, and they can swim at 6 mph, which is really booking. By comparison, Michael Phelps managed about 4.7 mph in the 200-meter sprint.

The largest polar bear ever taken, according to Guinness, was shot in Alaska in 1960. It weighed 2,209 lbs. and stood 10 ft., 4 in. tall. It is now on display outside the coffee shop in the former Historic Commercial Hotel in Elko, NV. 

[Related: How to survive a grizzly encounter.]

Because they are so big and heavy, polar bears quickly overheat when sprinting, so they don’t do a lot of it. Bears spend the majority of their lives on sea ice (their Latin name, Ursus maritimus, means, naturally, “maritime bear”) and scientists have theorized that their gait gives them better balance on ice. Polar bears live on sea ice in order to hunt seals, their primary food. Climate change and the disappearance of sea ice is already having an effect on polar bear populations. 

The longest polar bear swim lasted more than 9 days and covered 425 miles—the distance between Washington, D.C., and Boston. The swim was made in the Beaufort Sea, where sea ice is diminishing due to climate change. The 2011 study says that the bear lost 22 percent of her body weight during the swim, as well as a cub that was accompanying her. Scientists say polar bears are being forced to swim longer distances now that there is less sea ice.

There are about 22,000 polar bears left. They live in five countries: the U.S., Russia, Denmark, Norway, and Canada. Polar bears are believed to have resulted from a population of brown bears that became isolated in Siberia during the Pleistocene. Their molar teeth are significantly different from those of brown bears. 

How fast can a grizzly bear run? 

Adult grizzly bear looking directly at camera
Trying to outrun a grizzly bear is the worst thing you could do. jdaypix from Pixabay

Grizzly bear top speed: 35 to 40 mph

Brown bears (Ursus arctos) are found across Eurasia and in North America. Their range includes parts of Russia, China, Scandinavia, Iran, and Romania. Grizzly bears (Ursus arctos horribilis) are a subspecies of brown bear found in North America. They’re found primarily in Alaska and Canada, with small populations in Idaho, Montana, Washington, and Wyoming. The total population is around 60,000. 

There are three other kinds of brown bears in North America: the Kodiak bear, the Kamchatka bear, and the peninsular grizzly. The largest hunted grizzly on record was a Kodiak bear that weighed 1700 lbs. It’s on display at the Anchorage Airport. I have seen it, and would definitely let it pre-board on my flight. The largest Kodiak in captivity lived in a zoo in Bismarck, North Dakota. He was named Clyde, lived 22 years, and weighed 2,130 lbs. at death. His fat was measured at 9 inches thick. A year earlier, he was thought to have weighed even more, 2,400 lbs. 

Grizzlies are distinguished from black bears in a number of ways. Unlike black bears, they have a hump of muscle on their backs that helps them dig, which is what grizzlies do while searching for roots and insects or when making dens. They have what’s commonly described as a “dished in” face with rounded, short ears. A black bear, by contrast, has a straighter-profiled face and pointier, longer ears. The griz also has a rump that, when standing, is lower than its shoulders, while a black bear’s rump is taller than its shoulders. If you get really close, you can also distinguish grizzlies by their longer claws, although this is not recommended. A grizzly’s claws measure 2-4 inches, while a black bear’s claws measure just 1-2 inches. 

Both black bears and grizzly bears can climb trees, so hiding in a tree isn’t a good way to avoid either species. Black bears are more instinctive climbers, but a grizzly after prey has no qualms about climbing trees. Scientists think that this ability is what allowed black bears to escape mega-predators like saber-tooth tigers and dire wolves during their evolution, when other ground-dwelling bears died out. The average brown bear encounter is 20 times (according to the National Bear Center) more likely to result in injury than the average black bear encounter. 

Grizzly bears evolved in treeless environments. Their strategy has always been to confront and neutralize threats. Being neutralized by a grizzly can be highly uncomfortable. 

How fast can a black bear run? 

Bears photo
A black bear can easily outrun anybody on the planet. Kevin Phillips from Pixabay

Black bear top speed: 30 mph

The black bear (Ursus americanus) is native to North America and is more closely related to the Asiatic black bear than to the grizzly or polar bear. Whereas other specialized mega-predators of the last Ice Age—two species of the larger short-faced bear and the aforementioned saber tooth tigers and dire wolves—died out, the omnivorous black bear is still with us and found in most of its historic range of forested lands. 

The biggest black bear on record was a male from New Brunswick that was shot in 1972. Its dressed weight was 902 lbs., meaning that it probably weighed 1,100 lbs when alive. In 1921, a cow-killing black bear weighing 899 lbs. was shot in Arizona. There have been a number of bears over 800 lbs. killed by hunters in recent years, some of them from Pennsylvania and New Jersey, places where they were nearly hunted out of existence in the nineteenth and twentieth centuries.

[Related: Simple tips for getting black bears to leave you alone.]

About 10 years ago, A black bear study challenged the long-held idea that a mother bear with cubs is the most dangerous black bear. Of the 63 fatal attacks by black bears that had occurred between 1902 and 2011, 88 percent involved a bear “on the prowl, likely hunting for food.” A whopping 92 percent of those bears were male.

The study’s lead author, Stephen Herrero said that mama bears will act aggressively, swatting the ground and false charging. “They want to make you think they’ll eat you alive, but they’ll almost always stop.” They are more interested in keeping their cubs safe than attacking you.

American black bears are smart and good with their paws. They are, for example, capable of opening screw-top jars. Personally, I was almost 11 before I mastered this. Like all bears, they are crazy strong. A 120-pound juvenile was documented overturning flat rocks weighing 310-325 lbs. using a single paw. 

How to survive a bear attack 

There were just 48 fatal bear attacks in North America between 2000 and 2017, according to the Alaska News Source. Twenty-five attacks were from black bears and 21 from grizzly bears. Given that there are 15 times as many black bears (900,000 in North America, according to the Fur Institute of Canada) as grizzlies, it’s obvious that, bear for bear, grizzly bears are much more dangerous than black bears. According to the National Park Service, if you see a bear, talk to it in a calm voice to let it know you’re human and not a prey animal. Stand your ground—if possible, get to higher ground to make yourself appear bigger—and wave your arms slowly. If the bear stands on its hind legs, it’s usually just curious. 

Don’t run, as that’s what prey does, and is likely to set off the bear’s predatory instincts. Screams can do the same thing. Instead, keep talking in a low voice and move away slowly. If possible don’t retreat directly, but instead at an angle. Sideways movement is generally interpreted by bears as non-threatening, whereas a direct retreat is more likely to be associated with prey animal behavior. 

How to survive a grizzly bear attack 

  • If a bear attacks you, leave your pack on—it will protect your back—and play dead. 
  • Lie flat on your stomach, hands clasped behind your head to protect your neck, feet spread wide to make it harder for the bear to roll you over. 
  • Remain still. You are going to get bloodied, but usually, the bear will leave when you don’t respond. Normally, fighting back just increases the ferocity of the attack.
  • IF the attack persists or the bear comes back, fight back as hard as you can, striking the bear in the face. 

How to survive a black bear attack 

  • As with a grizzly, talk calmly, wave your arms slowly, and make yourself look as big as possible. Mothers with cubs are best handled by giving them space and retreating slowly while talking calmly.
  • Shout at the bear, throw rocks, and try to escape to a car or building if possible, all while looking at the bear. Do not turn and run away.
  • If the bear attacks, fight back using any object available, aiming your blows at the bear’s face and muzzle.
  • NEVER PLAY DEAD. 

If any bear attacks you in your tent or stalks you prior to an attack, fight back immediately with anything you have. Such attacks are rare but very serious because the bear is looking for food and thinks you are prey. If you are among people who don’t think bears are dangerous, get out of there as fast as possible. There are lots of YouTube videos of people ignoring bear safety rules. They have seen too many Disney movies. 

Correction (March 27, 2023): The article previously stated that grizzly bears can maintain a speed of 25 to 28 mph for two miles. It should be two hours, not two miles.

The post Bears can run at surprisingly fast speeds—here’s how they vary by species appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How can you tell a dolphin’s age? Check its freckles. https://www.popsci.com/environment/dolphin-age-speckle-spot/ Fri, 24 Mar 2023 22:00:00 +0000 https://www.popsci.com/?p=522241
More than just beauty marks, Indo-Pacific bottlenose dolphins’ spots are a reliable marker of aging.
More than just beauty marks, Indo-Pacific bottlenose dolphins’ spots are a reliable marker of aging. Alexis Rosenfeld/Getty Images

Scientists can now predict how old Indo-Pacific bottlenose dolphins are based on their speckled bellies.

The post How can you tell a dolphin’s age? Check its freckles. appeared first on Popular Science.

]]>
More than just beauty marks, Indo-Pacific bottlenose dolphins’ spots are a reliable marker of aging.
More than just beauty marks, Indo-Pacific bottlenose dolphins’ spots are a reliable marker of aging. Alexis Rosenfeld/Getty Images

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

As humans age, our bodies are often graced with fine lines, gray hairs, and flecks of hyperpigmentation on our skin known as age spots. Indo-Pacific bottlenose dolphins get spots with age, too. And as scientists have revealed in a recent study, the onset of dolphins’ speckling is so predictable it can be a noninvasive way to gauge the dolphins’ age.

Age is a crucial metric for understanding dolphin populations. Many ways of calculating a dolphin’s age exist, such as counting the layers of dental material in their teeth or analyzing DNA from a skin sample. But they’re all somewhat invasive. That’s why developing a model for estimating age by simply looking at dolphins’ dots is so interesting.

Ewa Krzyszczyk, a dolphin researcher at Bangor University in Wales who was not involved in the study, says the new technique “is a really useful tool.” By estimating a dolphin’s age, Krzyszczyk says, scientists can answer important questions, such as when a dolphin stops weaning, when it reaches sexuality maturity, or when a dolphin shows signs of deterioration from old age. “It gives a more well-rounded idea of what’s going on in your population that can then help with conservation,” she says.

The discovery that dolphins’ dots reflect aging stems from research led by Genfu Yagi, a marine mammal researcher at Mie University in Japan. Previously, Yagi had analyzed a compendium of underwater footage taken of Indo-Pacific bottlenose dolphins off the coast of Mikura Island, near central Japan. Since many of the individual dolphins were known from birth, Yagi could trace how their speckles emerged as they grew.

“The speckles first appear around the genital slit at 6.5 years of age,” says Yagi. Over time, he says, this treasure trail expands toward the head and up toward the back. By the time dolphins are around eight years old, speckles start on their chest, and by around 17, the spots reach their jaw. Wild bottlenose dolphins typically live between 30 and 50 years.

To use these speckles to estimate age, Yagi created a new system that quantifies the density of speckles on various parts of the body. This weighted speckle density score is then correlated with age. Yagi says his speckle-counting method works for dolphins between the ages of seven and 25 and has a margin of error of 2.58 years—more accurate than estimating age from DNA samples.

“The strength of this study is that it does not require special techniques, facilities, high costs, or any invasive surveying,” says Yagi. “Anyone can estimate a dolphin’s age.”

At the moment, Yagi’s formula can only be used for the Mikura Island Indo-Pacific bottlenose dolphin population because speckling onset could differ between geographic locations. He says, however, that the same modeling technique could work for other dolphin populations.

So far, dolphins are the only cetacean known to develop spots, with pantropical and Atlantic spotted dolphins getting dark spots on their bellies and light spots on their backs. Yagi says scientists don’t know exactly how or why these speckles form.

“This is a very rare trait, as few mammals other than dolphins continue to change body coloration throughout their lives,” he says.

This article first appeared in Hakai Magazine and is republished here with permission.

The post How can you tell a dolphin’s age? Check its freckles. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Jackrabbit’s color-changing fur may prepare them for climate change https://www.popsci.com/environment/white-tailed-jack-rabbit-genes-climate-change/ Thu, 23 Mar 2023 19:00:00 +0000 https://www.popsci.com/?p=522322
A white-tailed jackrabbit in it's winter white fur.
A white-tailed jackrabbit in it's winter white fur. They change their fur color from brown to white in the winter to better evade predators. Amedeo Cortese

The color-changing mammal is only one of 20 species that change shades with the seasons.

The post Jackrabbit’s color-changing fur may prepare them for climate change appeared first on Popular Science.

]]>
A white-tailed jackrabbit in it's winter white fur.
A white-tailed jackrabbit in it's winter white fur. They change their fur color from brown to white in the winter to better evade predators. Amedeo Cortese

As winter melts into the spring, flowers start to bloom and  some unique animals also begin to change color. The white-tailed jackrabbit is one of close to 20 species of animals and birds that have evolved to change colors with the seasons. The rabbit is not white all year, changing from its winter white into spring and summer brown with the season. It’s a survival tactic, as darker hued animals stand out to predators in snowy climates. 

A team of researchers from the United States and Portugal sought out to learn more about the genetics involved in these colorful seasonal changes. Their study, published today in the journal Science, details the evolution of winter camouflage in white-tailed jackrabbits. They uncovered how the genes that control this winter color variation could be a key to their survival as the planet warms and snow cover reduces.

[Related: How a peculiar parasitic plant relies on a rare Japanese rabbit.]

“Several members of the research team live and work in the Rocky Mountains, with a close connection to nature and the incredible changes that we are all experiencing year to year in the intensity of extreme weather and climate,” study co-author and ecologist/evolutionary biologist Jeffrey Good from the University of Montana, told PopSci

When beginning this research over a decade ago, Good said that a team member discovered a natural history study from 1963 which described more complicated, but intriguing patterns of continuous color variation in a white-tailed jackrabbit population in Colorado.

Study lead author and evolutionary biologist Mafalda Sousa Ferreira from BIOPOLIS-CIBIO at the University of Porto in Portugal was conducting this research as part of her PhD and took a closer look. “This made this part of my PhD project a bit risky,” Sousa Ferreira told PopSci. “If the paper was correct, we could explain something very unique, but if we couldn’t sample the specimens to characterize it, I might have to rethink part of my thesis.” 

With this half a century old clue in tow, they used museum specimens collected over the years to characterize the variations in color. The oldest of their 196 specimens dated back from 1906, sourced  from multiple museums including the Denver Museum of Nature & Science and the American Museum of Natural History in New York. Importantly, they confirmed the study from 1963 on color variation in white-tailed jackrabbits.

“It is very exciting to see something described years earlier materialize like that before your eyes. The high-risk project was actually possible, and eventually successful!” said Sousa Ferreira.

[Related: This hybrid hummingbird’s colorful feathers are a genetic puzzle.]

After categorizing the fur color variation, the team then used genetic sequencing and determined that the jackrabbits’ color variation in winter is primarily determined by three genes (EDNRB, CORIN, and ASIP) that control the production and localization of melanin pigments.

“Fur coat color is determined by pigments that are produced in special cells in the skin (melanocytes). You can think of these cells as pigment factories. How active these factories are—what type of pigment (black and brown, red and yellow) and how much is produced determines the color of hair,” explained Good. 

Brown jackrabbit hairs up close
Zoom of dorsal region of winter-brown white-tailed jackrabbit. Denver Museum of Nature & Science.

This process is quite common across mammals and are the same pigments that determine the color and darkness of hair in humans. Jackrabbits can display white, brown, or more intermediate-colored coats depending on what versions they get from their parents. 

After establishing how winter color variation, the environment, and the rabbit’s genetics were related, they combined these results with climate projections on expected snow loss due to climate change.

Surprisingly, they found that rabbit populations with higher variability in their color genes should be well prepared to face snow loss over the next 100 years. These projections indicate that the winter-brown jackrabbits will actually expand their range and could even help rescue the whole species from decline. 

It was a welcome bit of positive news, but the team still cautions that human-caused threats (disease, habitat loss, etc.) put this adaptability in jeopardy and highlights the importance of conservation at the species level.

“The jackrabbits and their coat colors show how understanding and preserving the genetic diversity of a species is just as important, particularly in this rapidly changing natural world,” said Good.

The post Jackrabbit’s color-changing fur may prepare them for climate change appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why dinosaurs were terrible swimmers https://www.popsci.com/environment/swimming-dinosaurs/ Thu, 23 Mar 2023 13:00:00 +0000 https://www.popsci.com/?p=521986
Ankylosaur in blue floatie and life vest riding the ocean waves. Prehistoric trees and a full moon are in the background. Illustrated.
Most of the dinosaurs that made it to the open ocean became shark bait. Meryl Rowin for Popular Science

They dominated earth, but not the oceans.

The post Why dinosaurs were terrible swimmers appeared first on Popular Science.

]]>
Ankylosaur in blue floatie and life vest riding the ocean waves. Prehistoric trees and a full moon are in the background. Illustrated.
Most of the dinosaurs that made it to the open ocean became shark bait. Meryl Rowin for Popular Science

Everything we’ve learned about dinosaurs essentially comes from fossils. But million-year-old rocks and bones have left a few hulking gaps in our understanding of the prehistoric world. Dinosaur Mysteries digs into the more secretive side of the “terrible lizards,” and all the questions that keep paleontologists up at night.

DINOSAURS DOMINATED EARTH. We all know the trope. The stupendous reptiles were so numerous and unique that they claimed a 150-million-year-long chunk of Earth’s history as the Age of Dinosaurs

But talking about a single group of organisms “dominating” the planet is silly. For one thing, the only dinosaurs bobbing in the ocean waves were carcasses, washed out by coastal storms.

Oceans have covered the vast majority of our planet for billions of years and contain more than 96 percent of Earth’s water at present. Dinosaurs, so far as we can tell, never made the sea their home. And paleontologists still don’t know why.

If there’s anything more challenging than understanding why a species evolved a particular way, it’s trying to backtrack on the evolutionary roads it didn’t take. Nature is full of invisible barriers and bottlenecks that open and close based on previous change. We usually don’t perceive these biological constraints until we run into a “Why not?” question. And even then, it can be difficult to distinguish between what’s actually impossible and what simply didn’t happen due to coincidence. In the case of the dinosaurs, though, we have a few clues as to why the seas remained beyond their domain.

For the most part, dinosaurs were atrocious swimmers. But it took decades for paleontologists to figure this out as they waited for the right fossil tracks, analyses of dinosaur bone structure, and computer methods capable of estimating the buoyancy of dinosaurs. During much of the 20th century, when experts insulted living reptiles and dinosaurs alike by characterizing the extinct saurians as dimwitted slowpokes, some paleontologists thought long-necked sauropods like Brachiosaurus could only support their weight in water. They also posited that the “duck-billed” dinosaurs, or hadrosaurids, plunged into lakes when tyrannosaurs stalked too near—the only defense herbivores that weren’t covered in armor or horns could have, apparently. Starting in the 1970s, paleontologists realized that fossilized tracks and other clues about the sauropods and duck-bills indicated they lived in terrestrial environments and weren’t adept in water. Not only that, but the relatively few trace fossils made by swimming dinosaurs—scrapes in the sediment from when they kicked their feet—were created by carnivorous dinosaurs, undercutting the idea that water was a refuge for plant eaters. 

A key dinosaurian trait may have prevented the reptiles from getting cozy in the water. The bony respiratory systems of sauropods and theropods show evidence of a unique set of air sacs connected to the lungs and other parts of the respiratory system. These soft-tissue pockets allowed the creatures to breathe more efficiently than mammals by keeping new air constantly flowing instead of relying on distinct inhales and exhales. (Birds have the same feature, with the added benefit that it keeps their skeletons light by filling bony spaces with air.) But when modeling how these air pockets would have affected dinosaurs’ swimming ability, paleontologists found that even large species would have acted like inflatable pool toys—too light for their size to be stable in the water. Adaptations to a life aquatic usually involve denser bones as a form of natural ballast—too much internal air would make dinosaurs work too hard to stay submerged. So much like us, while some dinosaurs could swim, they certainly weren’t diving neck and neck with the prehistoric sea turtles and plesiosaurs.

The same problem comes up for dinosaurs that were once considered skilled swimmers. The sail-backed, roughly 50-foot-long Spinosaurus has a few anatomical hallmarks associated with dipping and diving: Some of its bones seem extra dense, like those of other semiaquatic animals, and its tail is long and eel-esque, like a giant hitched-on paddle. But recent studies have found that Spinosaurus’ airy skeletal structure would have made it unstable in water too, and that the huge sail would have hampered the dinosaur’s ability to chase after prey while submerged. It’s more likely that the creature, once heralded as the world’s first swimming dinosaur, was more of a wader that plodded through the shallows as it tried to ambush fish. While additional evidence might alter the picture, especially because no one has found anything close to a complete Spinosaurus skeleton, for now the dinosaur most closely associated with the water was less aquatic than an alligator.

In all, after more than two centuries of searching, paleontologists have not identified a single dinosaur fossil that definitely spent most of its life at sea. The few specimens dug up from marine sediments—like the beautifully preserved armored Borealopelta from Alberta—represent dinosaurs that perished inland or along the coasts and were washed out to sea by storms or local flooding. Some became food for sharks and marine reptiles; some formed temporary reefs; and some quickly got buried under rock and soil, preserving their scales in place. But there were plenty of other reptiles in the sea—fish-like ichthyosaurs, long-necked plesiosaurs, and mosasaurs that were the ocean equivalent of Komodo dragons—that prove the dominion of dinosaurs was exaggerated. 

Of course, we know that dinosaurs eventually did wander into the water. For example, about 5 million years after the asteroid impact that ended the Cretaceous, the first ancestors of penguins took the plunge. Today, these water-savvy birds “fly” by flapping their wings underwater and sport a variety of adaptations, from hydrophobic feathers to salt-excreting vessels in their bills, that allow them to spend a great deal of their time in the ocean. But they still reproduce on land, shedding yet another clue to why extinct dinosaurs never hit the deep blue.

So far as we know, all dinosaurs laid eggs—from the very first terrible lizard (“dinosaur” translated into Greek) 243 million years ago to the chickadees bouncing around on the sidewalk in the present. Whereas other marine reptiles repeatedly evolved ways to give birth, likely starting with the soft-shelled eggs that some snakes and lizards retain today, dinosaurs don’t seem to have ever evolved a different capability. Or perhaps they did but were so late to the party that the seas were already full of nimble, sharp-toothed reptiles ready to munch on any awkward dino-paddlers. The ancient world of the dinosaurs was one that ended at the shoreline, leaving plenty of space for other creatures to rule the water.

We hope you enjoyed Riley Black’s column, Dinosaur Mysteries. Check back on PopSci+ in May for the next article.

The post Why dinosaurs were terrible swimmers appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The US inches closer to protecting 30 percent of all its lands and oceans https://www.popsci.com/environment/biden-white-house-conservation-in-action-summit/ Wed, 22 Mar 2023 14:00:00 +0000 https://www.popsci.com/?p=521807
President Joe Biden standing at a podium, addressing the White House Conservation in Action Summit.
President Joe Biden speaks during the White House Conservation in Action Summit at the US Interior Department on March 21, 2023. The summit is meant to highlight the administration's investments to advance conservation, restoration, and stewardship efforts, as well as access to nature in communities nationwide. Saul Loeb/AFP via Getty Images

Here's what you need to know about the White House Conservation in Action Summit.

The post The US inches closer to protecting 30 percent of all its lands and oceans appeared first on Popular Science.

]]>
President Joe Biden standing at a podium, addressing the White House Conservation in Action Summit.
President Joe Biden speaks during the White House Conservation in Action Summit at the US Interior Department on March 21, 2023. The summit is meant to highlight the administration's investments to advance conservation, restoration, and stewardship efforts, as well as access to nature in communities nationwide. Saul Loeb/AFP via Getty Images

On March 21, President Biden hosted the White House Conservation in Action Summit. His administration announced two new national monuments aimed to conserve and restore land, a possible new marine sanctuary in the Pacific Ocean, and the “first of its kind” Ocean Climate Action Plan.

“Our natural wonders are literally the envy of the world,” President Biden said while addressing the summit. “They’ve always been and they always will be as central to our heritage as a people and essential to our identity as a nation.”

[Related: ‘Humanity on thin ice’ says UN, but there is still time to act on climate change.]

Here’s a look at some of the announcements and plans from the summit.

Two new national monuments

Biden announced two new monuments, one in Nevada and another in Texas. Nevada’s Avi Kwa Ame National Monument, “will honor Tribal Nations and Indigenous peoples while conserving our public lands and growing America’s outdoor recreation economy,” according to a press release from the Biden Administration.  The new national monument site spans more than 500,000 acres of rugged landscape close to the California and Arizona state lines. It’s home to desert tortoises, bighorn sheep, some almost 900 year-old Joshua Trees, and the sacred desert mountain Avi Kwa Ame.

“The Mojave people, known as the people by the river, hold Avi Kwa Ame in our hearts,” said Fort Mojave Indian Tribal Chairman Timothy Williams at the summit. “Avi Kwa Ame, also known as Spirit Mountain, lays within the vast landscape of the pristine land of Southern Nevada. It is a place we know as our creation. It is the beginning of our traditional songs, and it is the place that Nevada nations throughout the southwest hold sacred.”

In southern Texas, the new Castner Range National Monument intends to honor veterans, servicemembers, and Tribal Nations, while expanding access to the outdoors for the El Paso community. Castner Range is located on Fort Bliss and was once a training and testing site for the United States Army during World War II, the Korean War, and the Vietnam War. 

Castner Range also hosts significant cultural sites for Tribal Nations, including the Apache and Pueblo peoples, the Comanche Nation, Hopi Tribe, and Kiowa Indian Tribe of Oklahoma. 

“Today’s historic announcement has been decades in the making,” said Representative Veronica Escobar, D-El Paso, who has pushed for this designation. “Generations of activists have dedicated countless hours and resources toward achieving this once seemingly impossible goal. It brings me such joy to know that El Pasoans will soon be able to enjoy the beauty of this majestic, expansive landmark for years to come.”

[Related: Biden sets an ambitious goal to protect 30 percent of US lands and waters.]

Protecting Pacific Remote Islands

President Biden will direct Secretary of Commerce Gina Raimondoto to consider a new National Marine Sanctuary designation within the next 30 days. The designation will protect all US waters near the Pacific Remote Islands (PRI’s). These remote islands and atolls located in the Central Pacific have nearly 777,000 square miles of water around them and expanding the current protections in these areas would further President Biden’s “30 by 30” plan of conserving at least 30 percent of U.S. ocean waters by 2030. 

If enacted, the area would be larger than Papahānaumokuākea Marine National Monument, an area that protects 583,000 square miles around the Northwestern Hawaiian Islands. President Barack Obama expanded the area in 2016 and the monument is already helping to restore large fish species like tuna.

“Our world’s oceans are at mortal risk, a breaking point precipitated by the unsustainable overfishing and other resource extraction, debris and land-based pollution, exacerbated and compounded by the devastating and pervasive marine effects of climate change,” said Representative Ed Case, D- Honolulu from Makapu’u to Mililani and Ko Olina. “As a nation, we have a duty to ensure the long-term survival of the PRI’s ecological, scientific and cultural value.”

US Ocean Climate Action Plan

According to President Biden, the first-ever Ocean Climate Action Plan will “harness the tremendous power of the ocean to help in our fight against the climate crisis.” He touted building more offshore wind farms to reduce carbon emissions, fortifying coastal communities, and better fisheries management in the speech and this new plan for the ocean. 

The plan outlines actions to meet three major goals: creating a carbon-neutral future without the harmful emissions that cause the climate to change, accelerating nature-based solutions, and enhancing resilience through ocean-based solutions like blue carbon that will help communities adapt and thrive in the face of an ever-changing climate. 

[Related: In the latest State of the Union, Biden highlights infrastructure, chips, and healthcare.]

To many environmental advocates, the plan comes not a moment too soon. On March 20, the United Nations’ Intergovernmental Panel on Climate Change (IPCC) released their Sixth Synthesis Report on climate change, which found that there is still a chance for humanity to avoid the worst of climate change’s future harms, but it might be our last chance.

“It’s reassuring that President Biden is taking the climate crisis seriously and ensuring that our oceans are factored into the plan to address it. To date, our oceans have helped protect us from the worst impacts of climate change, and we know they can play an outsized role in keeping the planet from warming to catastrophic levels,” said Oceana’s Vice President for the United States, Beth Lowell, in a press release. “But in order for that to happen, countries like the United States must stop the expansion of dirty and dangerous offshore drilling.”

Oil drilling was front and center at some of the protests the same day as the conservation summit. Climate activists gathered outside the Interior Department, protesting what they call Biden’s “climate hypocrisy.” Representatives from activist groups like Democracy Now! demanded that the Biden Administration change course on the controversial Willow oil project in Alaska. On March 13, President Biden approved the $8 billion plan to extract 600 million barrels of oil from federal land, despite a campaign promise of “no more drilling on federal lands, period.”

The post The US inches closer to protecting 30 percent of all its lands and oceans appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Save caterpillars by turning off your outdoor lights https://www.popsci.com/environment/caterpillar-predator-outdoor-lights/ Wed, 22 Mar 2023 13:00:19 +0000 https://www.popsci.com/?p=521765
A bug on a green leaf feeding on a caterpillar.
Under moderate levels of artificial light, predators have more opportunity to attack caterpillars. John Deitsch/Cornell University

Just a moderate amount of artificial light can make baby butterflies more susceptible to predators.

The post Save caterpillars by turning off your outdoor lights appeared first on Popular Science.

]]>
A bug on a green leaf feeding on a caterpillar.
Under moderate levels of artificial light, predators have more opportunity to attack caterpillars. John Deitsch/Cornell University

Artificial light at night can wreak havoc on a number of animals, from confusing moonlight-following sea turtle hatchlings to disrupting the sleep patterns of free-living animals like birds, to even stressing out caterpillars and making them age quicker.

Scientists are continuing to look more at the effects of artificial night light on insect larvae–like caterpillars.  A study published this month in the journal Proceedings of the Royal Society B: Biological Sciences found that even moderate levels of artificial light attract more caterpillar predators and reduce the chance that their larvae grow up into moths. Moths are part of the order lepidoptera that also contains butterflies and skippers ,and their larvae can serve as food for larger prey like birds, wasps, and some small amphibians. 

[Related: The switch to LEDs in Europe is visible from space.]

To test this light theory, scientists from Cornell University placed 552 lifelike caterpillar replicas made of soft clay in a forest in New Hampshire, gluing them to leaves to look as real as possible. They were made from a green clay that mimics the color and size of two moth caterpillars: Noctuidae (owlet moths) and Notodontidae (prominent moths). The marks of predators like birds, other insects, and arthropods can be left in the soft clay if they tried to take a bite of the fake caterpillars. 

Some of the models were placed on experimental lots that had 10 to 15 lux LED lighting, or roughly the brightness of a streetlight. The lights stayed on at night for about seven weeks in June and July 2021.

Of the 552 caterpillars deployed, 521 models were recovered. Almost half (249 fake caterpillars) showed predatory marks from arthropods, during the summer-long nighttime study. Additionally, they found that the rate of caterpillar predation was 27 percent higher on the experimental plots compared with the control areas that didn’t have the LED lighting.

A green clay models of a caterpillar that was placed in the woods and shows marks from predators in the forest.
Scientists can place clay models that look like caterpillars in the woods. Due to the soft clay, the researchers can examine the marks and get a sense of how often larvae are attacked by predators. CREDIT: John Deitsch/Cornell University.

Since the night sky is getting increasingly more polluted with artificial light, this poses another ecological problem for lepidopterans. These creatures already suffer from  threats like  habitat loss, chemical pollutants used in farming, climate change, and increasingly prevalent invasive species, according to the team.

[Related: ‘Skyglow’ is rapidly diminishing our nightly views of the stars.]

These findings are particularly worrisome for caterpillars at a larval stage when they are eating leaves to ensure that they grow into their next stage of development. Study co-author and research ecologist Sara Kaiser told the Cornell Chronicle, “When you turn on a porch light, you suddenly see a bunch of insects outside the door. But when you draw in those arthropod predators by adding light, then what is the impact on developing larvae? Top-down pressure – the possibility of being eaten by something.”
Some simple ways to reduce artificial light are by using smart lighting control to remotely manage any outside lighting, making sure that lights are close to the ground and shielded, and using the lowest intensity lighting possible.

The post Save caterpillars by turning off your outdoor lights appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Humanity on thin ice’ says UN, but there is still time to act on climate change https://www.popsci.com/environment/ipcc-6-report-un-climate-change/ Mon, 20 Mar 2023 17:00:00 +0000 https://www.popsci.com/?p=521114
The sun shining on glaciers.
Carbon pollution and fossil fuel use must be reduced by nearly two-thirds by 2035 in order to stave off the worst effects of climate change. Deposit Photos

Here's what you need to know about the IPCC's latest report.

The post ‘Humanity on thin ice’ says UN, but there is still time to act on climate change appeared first on Popular Science.

]]>
The sun shining on glaciers.
Carbon pollution and fossil fuel use must be reduced by nearly two-thirds by 2035 in order to stave off the worst effects of climate change. Deposit Photos

The United Nations’ Intergovernmental Panel on Climate Change (IPCC) released their Sixth Synthesis Report on climate change (AR6), following a week-long meeting in Switzerland. The up to 50 page-long report finds that there is still a chance for humanity to avoid the worst of climate change’s future harms, but it might be our last chance.

“This report can be summarized as a message of hope,” said IPCC Chair Hoesung Lee in a press conference. “This report clearly emphasizes that we do have technology and know how and tools to solve climate problems.” These are the major takeaways from the new report.

We must reduce fossil fuel emissions by 2035

According to the report, carbon pollution and fossil fuel use must be reduced by nearly two-thirds by 2035 in order to stave off the worst effects of climate change. More than 100 years of burning fossil fuels, in addition to unequal and unsustainable energy and land use ,has led to global warming of 2°F above pre-industrial levels. This increase has caused more frequent and intense extreme weather events, and makes the world more dangerous for life in every region of the planet.

[Related: Here’s how global warming will change your town’s weather by 2080.]

United Nations Secretary-General Antonio Guterres called for an end to all new fossil fuel exploration by 2040. Additionally, he called for carbon-free electricity generation in the developed world as early as 2035.

“Humanity is on thin ice — and that ice is melting fast,” Guterres said. “Our world needs climate action on all fronts — everything, everywhere, all at once.”

The report also says that investment and adaptation measures to climate change must be ramped up to reach the goal of the 2015 Paris climate agreement of limiting the amount of warming to 2.7°F.  The world has already warmed 2°F, making it a few tenths of a degree away from some of the most dire effects of climate change. Earlier IPCC reports detailed the harms at this level of warming, which includes worsened storms, famine, and sea level rise. 

Adaptation and mitigation has huge net benefits

AR6 also outlines that the solutions lie in climate resistant development, which provide wider benefits to society as a whole. Better access to clean energy and technology can improve health outcomes, particularly for women and children. Low-carbon forms of transportation (walking, cycling, public transit, etc.) can improve air quality. The economic benefits from improving people’s health by reducing greenhouse gas emissions would be roughly the same or possibly greater than the costs it will take to reduce emissions. 

[Related: Pandemic shipping took a heavy toll on the climate.]

The panelists at the press conference stressed how actions this decade are crucial to ensure a safe future and that this report points to the co-benefits from acting now will have more than the IPCC’s report from 2014 (AR5).  

Political and financial will is key

The report also highlights the imperative role of financing adaptation and mitigation measures. The authors found that while government’s are key to enforcing policy, the financial sector must play their role too. 

“At the core, the financial system needs to be able to respond to the challenges ahead,” said Amjad Abdulla, IPCC Vice Chair. “There’s plenty of financing that’s available for multiple reasons and multiple activities, but our underlying assessment suggests, in that context, the investments that need to take place in both climate adaptation and mitigation needs to rise by three to six times at least.”

The report and press conference focused on the disparity between rich and developing nations, as wealthier nations cause more carbon dioxide emissions, while poorer countries get hit harder by extreme weather. The report calls for an increase in financial help for developing countries to adapt to a warmer world and switch to environmentally sustainable forms of energy. Following the UN’s Climate Conference in November 2022, financial pledges were made for a damage and compensation fund for developing countries

[Related: 3 of the the biggest climate decisions from COP27.]

The report is based on data from a few years ago, and does not take into account fossil fuel projects that are already in development and comes one week after President Biden approved the massive Willow oil project in Alaska. This new site could produce up to 180,000 barrels of oil a day and is seen by some political columnists and Democrats as a betrayal by President Biden. 

“The Synthesis Report makes clear that we need swift and bold action to have any chance of averting the worst of the climate crisis. Under President Biden’s leadership, the U.S. has made historic progress in building an equitable clean energy economy, including the passage of the Inflation Reduction Act,” said Jill Tauber, EarthJustice Vice President of Litigation for Climate & Energy, in a press release. “However, the administration is undermining its own gains by greenlighting carbon bombs, like the Willow project, which would lock us into decades of more greenhouse gas emissions.”

In tandem with the reports findings, the World Resources Institute also points to fact that it is not too late to work to ensure a better future for the planet. 

“Despite their dire warnings, the IPCC offers reasons to be hopeful,” said World Resources Institute President and CEO Ani Dasgupta, in a press release. “The report shows a narrow path to secure a livable future if we rapidly correct course. This involves deep emission reductions from every sector of the economy, as well as much greater investments to build resilience to climate impacts and support for people facing unavoidable climate losses and damage. 

The post ‘Humanity on thin ice’ says UN, but there is still time to act on climate change appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This new species of pink orchid looks like delicate glasswork https://www.popsci.com/environment/japan-new-orchid-species-discovery/ Fri, 17 Mar 2023 15:00:00 +0000 https://www.popsci.com/?p=520509
Close up of a newly discovered orchid species named Spiranthes hachijoensis with pink petals,
Spiranthes hachijoensis is a newly identified species of orchid from Japan. Photographed by Masayuki Ishibashi

The petite flowers were hiding in plain sight across parks and backyard gardens in Japan.

The post This new species of pink orchid looks like delicate glasswork appeared first on Popular Science.

]]>
Close up of a newly discovered orchid species named Spiranthes hachijoensis with pink petals,
Spiranthes hachijoensis is a newly identified species of orchid from Japan. Photographed by Masayuki Ishibashi

Around a decade ago, Kobe University biologist Kenji Suetsugu took a research trip to Japan’s Chiba Prefecture on the eastern outskirts of Tokyo. While there, pops of vivid colored flowers rising out from the green and brown grassland caught his eye.

“Its vibrant colors immediately caught my attention. I remember being struck by its unique rosy pink petals that bear a striking resemblance to glasswork,” Suetsugu tells PopSci in an email. 

[Related: This incredibly rare orchid survives by making male beetles horny.]

What he saw was actually an undiscovered species of orchid, a rarity in a country whose plant species have been extensively studied and classified.  The discovery of the delicate, elegant, pink-petaled Spiranthes hachijoensis (S. hachijoensis) is detailed in a new study co-authored by Suetsugu and published on March 17 in the Journal of Plant Science

S. hachijoensis is actually found in many common places in Japan like parks, lawns, and gardens,  but the striking plant was not named.  Scientists believed that all the Spiranthes on the Japanese mainland were actually one species. The blooms of S. hachijoensis are pink, purple, and white and its petals are about 0.1 to 0.2 inches long. 

Additional specimens have been collected in Japan and as far away as Taiwan and Laos. “After collecting some samples, we took the flowers back to the laboratory and dissected them. We noticed that the morphology was different from other plants we had studied,” Suetsugu explains. 

OLYMPUS DIGITAL CAMERA
Spiranthes hachijoensis as seen in a close up of inflorescence. CREDIT: Photographed by Kenji Suetsugu.

They analyzed the samples DNA and reproductive biology and found that this cryptic species had genetic differences from other orchids in the genus at the molecular level. S. hachijoensis has a smooth stem instead of the typically hairy stem of another lookalike species named Spiranthes australis. While the new species grows alongside S. australis, it blooms about a month later, leading to reproductive isolation between the two distinct plant species. 

The orchid species that make up the Spiranthes genus are commonly called ladies’ tresses, due to their resemblance to locks of hair. Their dainty, bell shaped flowers bloom  in a variety of colors from yellow to purple to pink or white, and are typically grown from a hairy central stem in a spiral. There are roughly 50 Spiranthes found in tropical or temperate regions of North and South America, Eurasia, and Australia. According to Suetsugu, Spiranthes have been known to Japan for centuries and is the country’s most familiar orchid. It is even featured in Manyoshu, or “Collection of Ten Thousand Leaves,” Japan’s oldest anthology of poetry dating back to 750 CE.

[Related: How a peculiar parasitic plant relies on a rare Japanese rabbit.]

The team will continue to keep studying S. hachijoensis to better understand its DNA, ecology, evolutionary history, and conservation status. While orchids are a very prolific plant with roughly 28,000 known species around the world, habitat loss has endangered the beautiful and ephemeral flowers.

“Discovering a new species is not only exciting, but also important for our understanding of biodiversity and for conservation efforts,” says Suetsugu. “The discovery of this new species hiding in mundane places demonstrates the need for persistent exploration even in seemingly unremarkable places. I think it’s a discovery that reminds us that there is still an unknown world in nature that we come into contact with on a daily basis.”

The post This new species of pink orchid looks like delicate glasswork appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Your poop is useful. Meet the father-son team creating ‘humanure.’ https://www.popsci.com/environment/human-poop-fertilizer/ Tue, 14 Mar 2023 13:00:00 +0000 https://www.popsci.com/?p=519097
Poop emoji covered in soap bubbles on a light blue background
Cleaning poop is a dirty job. Andre Rucker for Popular Science

Why does Americans' poop rot in landfills when it could be fertilizing farms and parks?

The post Your poop is useful. Meet the father-son team creating ‘humanure.’ appeared first on Popular Science.

]]>
Poop emoji covered in soap bubbles on a light blue background
Cleaning poop is a dirty job. Andre Rucker for Popular Science

I AM STANDING in the basement of 1550 Mission Street in San Francisco—a new high-rise in the city’s prime real estate location—listening to the steady hum of human grime being filtered. Above me, residents on 38 floors are showering and brushing their teeth as part of their morning routine. In front of me, a maze of pipes and tubes feeds their discarded water into a membrane bioreactor the size of a backyard hot tub. Inside, the membranes and oxygen bubbles purify the H2O and channel it back into the building instead of into sewage pipes, clean enough for flushing toilets and urinals. “We’re able to reuse about 95 percent of it,” says Aaron Tartakovsky, co-founder and CEO of Epic Cleantec, the company that designed the technology. His father, Igor, the other co-founder and the chief engineer, chimes in with a twinkle in his eye and a proud smile. “It’s kinda cool how it works.”

The really cool stuff, however, is stationed in the nearby New Market, or NEMA, building where Aaron and Igor piloted their poop-recycling operation. Unlike the 1550 Mission setup, which recovers only grey water—from everything but toilets and kitchen sinks—NEMA’s does the dirty work. Here, a silvery machine resembling a giant food processor the size of a small fridge collects people’s waste, intercepting the sewage outflow. When the machine runs, the sludge splats onto its rotating mesh belt. The liquids trickle through, but the feces stay on. A wrangler squeezes out more water, producing palm-size glops of dung that plop into a bin. 

When the pilot program was in operation in 2019 and 2020, Aaron or his coworkers would replace that 55-gallon bin weekly and drive it to the company’s nearby poo-processing facility, Epic Hub, located in a former car dealership. There, the excrement was chucked into another apparatus that thoroughly mixed it with a disinfecting chemical blend, killing pathogens. The sterilized gunk was composted into soil, which Aaron and Igor used to turn an industrial patch of land outside Epic Hub into a blooming garden. “We call it ‘Soil by San Franciscans for San Franciscans,’” Aaron says. “We’re talking to the city about using it in parks.” I share every bit of his excitement. As someone who grew up on a small farm in the former Soviet Union that my grandfather fertilized with the contents of our septic system, I believe our so-called “humanure” should nourish our crops.  

underground pipes painted purple
US cities use purple to mark pipes with recycled water, like the ones under 1550 Mission Street in San Francisco. Lina Zeldovich

The US produced 5,823,000 dry metric tons of biosolids—the end product of wastewater treatment plants—in 2018. In terms of its chemistry, the stuff is like your average dirt, albeit with a smell. In an ideal world, biosolids—potent fertilizers high in nitrogen, phosphorus, and potassium—would be returned to vegetable and dairy farms to replenish the nutrients we’ve extracted or grow the trees we cut. Scientists call this concept circular ecology, which is key to sustainable living in the 21st century. Yet at the moment, only half of our biosolids come back to farmlands. The other half rots in landfills, releasing greenhouse gases—or, worse, is shoved into incinerators that spit smoke into the air. The reasons for these wasteful approaches span from financial to logistical to the general yuck factor. New equipment for turning sludge into pathogen-free fertilizer that meets EPA standards can be expensive. If a big metropolitan area generates a few thousand metric tons of biosolids a week and doesn’t have enough farmland nearby to absorb it, the city will have to truck it away using fossil fuels. Finally, people just don’t love wastewater facilities, which they see as epitomes of filth. 

That mindset began to change in 2011, first among tech creators and then the larger public, when the Bill and Melinda Gates Foundation issued the Reinvent the Toilet Challenge, asking experts to recover valuable resources from toilet outputs, including clean water and nutrients. Originally intended to solve sanitation challenges in poorer countries, it propelled new ideas for sewage treatment in general. California’s historic drought was another big catalyst. “In 2014, our elected officials asked, ‘Why are we still using fresh water to flush toilets in San Francisco? And why can’t we reuse it?’” Aaron says. “So we really focused on solving that problem.”  

The city wanted to encourage water reuse, particularly in big new buildings, says Paula Kehoe, director of water resources at the San Francisco Public Utilities Commission, an agency that services 2.7 million people in the San Francisco Bay Area. “We started thinking about the on-site water treatment systems as more of resource recovery facilities,” Kehoe says. 

Two men in blue suits walking through a green and purple city garden grown with human manure
Aaron and Igor Tartakovsky inspect the blooming plants outside their research and development lab, Epic Hub. Thanks to the fertile soil “produced by San Franciscans,” this former industrial patch of land is thriving. Lina Zeldovich

In a time when we embrace locally grown food, it makes sense to process the remnants locally as well. The centralized treatment plants that most city municipalities rely on might have worked well in the 20th century, but many have now aged to the point where they’re no longer sustainable or economical. The typical wastewater pipe lasts 50 to 100 years; the average US one is about 45 years old, with some being more than a century old, which creates the risk of sewage spills and contamination. According to a 2019 estimate from the Report Card of America’s Infrastructure, the nation’s utilities spent more than $3 billion to replace about 4,700 miles of pipelines—only a tiny fraction of the country’s total 1,300,000-mile network. A 2017 report estimates that by 2042, 56 million more people will be using these centralized treatment systems, and some $271 billion will be needed to sustain them annually. 

On-site filtration and treatment could be a crucial alternative. “There are certainly advantages with a centralized wastewater system, as you get specialized knowledge and technical expertise in one place in case something goes wrong,” says Bill Brower, senior biosolids engineer at Brown and Caldwell, an environmental engineering and construction firm. Yet in the era of climate change and increasing droughts, purifying the precious H2O at the source has real benefits too. “I think there’s certainly a place for doing more decentralized treatment,” Brower says. But before we start shutting down the sewage lines, we need to figure out where to put the “number two.”

White toilets with flowers growing out of them, set on a grassy hill against a backdrop of fluffy clouds
The grass is greener where waste gets repurposed. Andre Rucker for Popular Science

From soviet refugee to poop entrepreneur

Growing up in 1960s Odessa, Ukraine, then a part of the USSR, Igor Tartakovsky aimed to be a rocket scientist. “I wanted to build planes and spaceships—that was my childhood dream,” he says. Yet for a Jewish kid, it was a difficult path. The anti-Semitism in the Soviet empire was palpable: Igor graduated from high school with highest honors, but was turned down from his town’s engineering schools. He didn’t give up easily and was eventually accepted to study aeronautics at Electromechanical College in Novosibirsk, a snowbound Siberian city. He traded Odessa’s mild climate for endless winter in a heartbeat. 

When he applied for a summer job in engineering the next year, he filled out 15 forms, submitted more than a dozen photos of himself, and was still rejected. He let go of his aerospace dream and pivoted to studying refrigeration and air conditioning.  

The career switch didn’t help. Again, Igor graduated at the top of his class, and again, he was turned down for the jobs he applied for. He got a gig at a floating fishing factory boat that sailed in the frozen Far East for six months at a time. Besides refrigerating seafood, his engineering prowess came in handy for building a contraption to distill moonshine from fermented apple juice—a feat his crewmates loved, but Igor didn’t. He felt he was wasting his life. It was clear that he didn’t have a future in the Soviet Union, so his family decided to leave. 

The only way to emigrate from the KGB state at the time was to receive an invitation to “reunite with the family” from a relative living abroad. Any correspondence asking for such a favor could be intercepted by the government. So Igor’s kin penned a so-called “underwear letter.” They wrote their names and dates of birth down on the stretched-out waistband of a pair of boxers; when the rubber shrank down, the text wasn’t visible. A person leaving the country took their underwear missive with him, and after a year, the coveted invite came through. The KGB officer working on Igor’s case called him “an idiot” because he “clearly had bright prospects in this country,” and gave him 45 days to leave. Igor obliged. His parents and sister followed. 

In San Francisco, Igor met his future wife, got a job, and had children. Later he launched his own company, designing air-conditioning systems for apartment and office buildings in the city. He never thought he’d end up making “humanure.”

Humans vs. manure

Throughout most of human history, our relationship with our waste has been thorny. We can’t stop producing it, but we can’t live with it. The undigested nutrients in our feces—proteins, lipids, sugars—breed intestinal worms and the deadly bacteria that cause scourges like dysentery, gastroenteritis, and typhoid. To avoid spreading disease, we must distance ourselves from our metabolic output as quickly and efficiently as possible. 

The industrial Western sewage systems of the past 150 years perfected this process. As cities grew, so did their centralized sewage operations. The first wastewater treatment plants in America were developed in the 1850s. Today, more than 16,000 of them chug out sludge 24/7, processing what comes down municipal, home, and office pipes. Combined, the US has enough such tubing to wrap around our planet 52 times. Or reach to the moon and back almost thrice. About 62.5 billion gallons of wastewater flow through these lines daily. 

Two men stand in front of large industrial tub labeled epiccleantec
The father and son entrepreneur team saw an opening in wastewater recycling and sewage management and launched their tech company in 2015. Courtesy of Cleantec

To my grandfather, none of this made economic or environmental sense, especially the part about tossing dung along with trash. “You have to feed the earth the way you feed people,” he used to say as he filled up his compost pits with the brown goo from our septic tank every fall. He then closed them up and let Mother Nature do her job. When he dug them up again three years later, the pits would be full of fluffy black dirt so nutrient-rich that our plants managed to bear fruit despite the short, cold, and rainy Russian summers. 

Spending billions on purifying wastewater to release into rivers and streams, only to pump it back into water mains and clean it again for human consumption, doesn’t make sense either. “In 2015 it became a mandatory requirement for any new building in San Francisco over 250,000 square feet to install an on-site water treatment system for their toilet and irrigation needs,” says Kehoe. “And in 2021 it became a requirement for any new building over 100,000 square feet.”

For Igor and Aaron, his third and youngest son, who studied political science but ended up following in his father’s engineering footsteps, the move was a serendipitous one. They’d just gotten their toes wet in sewage and were pumped to dive in. 

An epic origin story

In 2013, a client asked Igor to find a building-wide sewage recycling system for their space in the Bay Area. He couldn’t find a single model on the market. Some months later, at a tech conference, Igor watched someone sterilize dog poop by whipping it in a food processor with potassium permanganate. He knew the chemical from his childhood: Called margantsovka, it was a common disinfectant. When his aquarium fish would start getting sick, he would add a few drops, he recalls. “The bacteria would die, and the fish would swim in a rosy water for a little while because potassium permanganate is also a colorant.” The compound (chemical formula KMnO4) causes an oxidizing reaction that kills microorganisms, including the pathogenic ones that commonly afflict humans. “It’s been widely used to wash wounds or disinfect a glass that someone drank from,” says Govind Rao, professor of biochemical engineering at the University of Maryland, Baltimore County. “It’s a very powerful oxidant, but it works best when pathogen loads are low.” Disinfecting typical sewage would require tons of KMnO4, but the Tartakovskys found a workaround—just do it at the source. Most people don’t carry large amounts of dangerous pathogens in their intestines (otherwise they’d be very sick), so what they flush isn’t usually festering with germs. It is after sludge floats through the miles of pipes for days that it becomes colonized with all sorts of bugs that naturally dwell there, growing and multiplying. “When sewage swirls down the pipes for days and weeks, its pathogen load is huge,” Aaron explains. “But if you get it right after someone flushed the toilet, the pathogen load is much lower.”

human waste processor
Using a proprietary disinfecting mix, the “poop mixer” converts the biosolids extracted from the sewage stream at a pilot site into garden soil. Courtesy of Cleantec

Igor and Aaron started by whipping their family dogs’ droppings in a food processor, too. For better sterilization, they added other chemicals, coming up with their company’s proprietary microbe-busting mix. Now they needed to scale up, so they convinced an Italian company that built industrial-size mixers to let them try their neutralizing method on septic sludge at a wastewater treatment plant near Florence. In March 2015, they flew in for a test. As they experimented with the settings on a machine the size of a backyard grill, the reaction released too much heat. The mixer’s top blew off, painting the ceiling with sanitized yet still stinky slime—a historic incident Aaron caught on video. But that taught the father and son the parameters for an industrial processor. Once back home, they formed Epic Cleantec, a water recycling solution company, and focused on building their own mixer. 

They hired an engineering company in Minnesota to build one. Testing it in the Land of 10,000 Lakes proved messy too. Aaron was filling up a bucket of fecal goo when the pressurized slush hit the bottom so hard, it splashed him from head to toe. “I almost lost my lunch that day,” he recalls. Later, the muck partially froze in the frigid Midwestern winter, rattling around the mixer. They never considered giving up. “I learned early on that failure was not an option,” Igor says. Aaron draws his inspiration from his family history. “My grandparents were Holocaust survivors,” he says. “Considering what they went through, I can deal with sewage.”

The Minnesota exercise gave them exact mixer dimensions—length, diameter, blade size. But the final version was built by a company in Los Angeles. Driving down to give it a whirl, Aaron called every kennel in the area to ask for dog poop. Most laughed and thought it was a prank, but five dished some out. More came from the SPCA, which became Epic’s first official poop supplier. 

greenhouse pots with strawberry plants grown in human manure
In their greenhouse, the Epic Cleantec team sows strawberries and other plants in the sanitized and dried experimental substrate. Courtesy of Cleantec

Igor and Aaron were also working on assembling the apparatus that managed the sewage flow, which would put sludge through the rotating mesh belt and then a wrangler to compact it into the palm-size glops that would be fed into the disinfecting mixer. Stringing the mesh belt and wrangler together was reasonably straightforward, but the father and son needed large quantities of sewage to test the process from end to end. In 2017, Epic began buying sludge from Stanford University’s Codiga Resource Recovery Center, which had a miniature sewage station, to continue calibrating their system. “It cost 40 cents per pound,” recalls Sebastien Tilmans, Codiga’s executive director.

When even that stream proved insignificant, Epic began chugging sludge by the truckload—literally. By then, Epic Hub was located in a former car dealership, so the sewage trucks that were emptying some of the Bay Area septic systems would roll in to dish out their cargo. “We would stretch a hose from the truck into our system and let it run, end to end,” Aaron says. “Some of these trucks carried sewage from a Facebook cafeteria bathroom,” he explains. “Some of our soil is Facebook-made.”

Once they tested the mixer-processor in their Epic Hub, the Tartakovskys approached the owners of NEMA (whom Igor knew) about testing it in real life. Building engineer Derwin Narvaez’s first reaction was one of sheer disgust. “You’re going to do what?” he remembers asking. Seeing the tech in action won him over. “The end product is just black dirt!”

Standing next to the custom mixer, which resembles a giant meat grinder, Aaron demonstrates how that black dirt was produced during the pilot. The glops of excrement picked up from the sludge squeezer in the NEMA basement were shaken in from the collecting bin—and the machine would chew through them with Epic’s disinfecting blends for about 20 minutes. Then Aaron would put the freshly made earth through a battery of tests, checking for pathogens and heavy metals, before letting it dry outside near the Epic Hub garden. “I always wondered what people in nearby skyscrapers thought we were doing,” he says. “But no one complained,” given there was no stink.

“My grandparents were holocaust survivors. considering what they went through, I can deal with sewage.”

—Aaron Tartakovsky

He scrapes some of the dirt residue from the mixer’s innards and offers it to me. After some hesitation, I hold the powdery black substance in my hand and give it a timid sniff. It looks and smells just like the garden dirt from my grandfather’s pits. But while his backyard-farm approach worked on a small scale, Epic’s might change how we process sewage in entire high-rises, which is crucial, because two out of every three people worldwide will likely be living in urban areas by 2050

Other companies are redesigning our relationship with excrement in their own unique ways. A group of pee-cyclers in Vermont founded Rich Earth Institute, a nonprofit that gathers urine from residents in containers and distributes it to farmers, but for many that manual process is a downside. Israel-based startup HomeBiogas pioneered a toilet that helps produce fertilizer and methane, the latter to be used for cooking fuel—a self-sustaining approach that works for private homes and small buildings, but not high-rises. South African company LiquidGold Africa developed a way to extract fertilizing compounds from urine, which can be collected en masse from plumbing in buildings, but it doesn’t yet recycle solids. In Portland, Oregon, a large apartment complex, Hassalo on Eighth, built an entire outdoor wastewater treatment facility, but that requires a lot of surrounding space. Australia-based company Aquacell operates several building-level water recycling systems in the Bay Area; according to Kehoe, a few more are in the works, but Aquacell doesn’t dig into the solids business. By comparison, Epic’s end-to-end tech is particularly well suited for offices and dwellings in densely populated cities, the number of which will keep growing. “This firm seems to have a solid, innovative technology,” says William Toffey, sustainability strategist at BlueTech Research, a company that specializes in water solutions. “The 1550 residence in San Francisco is its shiniest example.”

Will more skyscrapers join in? Narvaez, who is now an ardent supporter, thinks so. “Rather than rationing water, buildings should adopt this approach,” he says. “To me, it’s the future of all new buildings. The buildings will save a lot, and so will society. It’s a win-win situation.” 

In the coming years, Epic’s next-generation OneWater system will be installed in four other buildings in San Diego and San Jose, where it will function as a full-blown mini-treatment plant. The mesh belt processor will squeeze water out of the sludge. The membrane bioreactor will clean it and put it back in circulation. And the mixer will turn the gunk into garden topsoil, eventually feeding the cities’ parks, the Tartakovskys hope. “We’ll use the same motto,” Aaron says. “‘The soil by San Diegans for San Diegans.’ And so on.”

Read more PopSci+ stories.

The post Your poop is useful. Meet the father-son team creating ‘humanure.’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A stinky, 5,000-mile-long wad of seaweed is about to gunk up Florida’s beaches https://www.popsci.com/environment/atlantic-seaweed-belt-florida/ Mon, 13 Mar 2023 19:00:00 +0000 https://www.popsci.com/?p=519186
Sargassum has caused health and environmental problems in the Caribbean for years.
Sargassum has caused health and environmental problems in the Caribbean for years. Zen Rial/Getty Images

Spring break could really get wild (and smelly) this year.

The post A stinky, 5,000-mile-long wad of seaweed is about to gunk up Florida’s beaches appeared first on Popular Science.

]]>
Sargassum has caused health and environmental problems in the Caribbean for years.
Sargassum has caused health and environmental problems in the Caribbean for years. Zen Rial/Getty Images

Seaweed is one of the most variable, sustainable substances on earth. Scientists have used it to make new plastics, medical devices, food, biofuels, and more. But right now, one variety of aquatic plant is also making a giant toxic bloom that can be seen from space. 

Meet the Great Atlantic Sargassum Belt—a nearly 5,000-mile-long, thickly matted sheet of sargassum algae floating between Mexico and West Africa. Sargassum, a genus of large brown seaweed, is pretty much harmless —or even beneficial—out in the open ocean. But when it creeps up on beaches, it can be a serious problem. And it’s growing

While these seaweed mounds may serve as carbon sinks and fish habitats when floating asea, as the mass inches closer to land, it can diminish water and air quality, smother coral reefs, and restrict oxygen for coastal fish. Huge piles of the seaweed typically turn up on Florida beaches around May, but the seaweed is already starting to swamp beaches in Key West, Brian LaPointe, a research professor at Florida Atlantic University’s Harbor Branch Oceanographic Institute, tells NBC. As of last week, 200 tons of the marine plant are expected to wash up on beaches in the Mexican Caribbean

[Related: This fossilized ‘ancient animal’ might be a bunch of old seaweed.]

With these pile-ups come even more pile-ups—of dead fish. According to the Independent, around 1,000 pounds of fish were cleared from Florida’s St. Pete Beach this month, and 3.5 tons of dead fish have already been removed in the past two weeks from the state’s Manatee County Parks.

The seaweed can be a huge problem for infrastructure. “Even if it’s just out in coastal waters, it can block intake valves for things like power plants or desalination plants, marinas can get completely inundated and boats can’t navigate through,” Brian Barnes, an assistant research professor at the University of South Florida’s College of Marine Science, tells NBC. Not to mention, one 2022 paper linked the hydrogen sulfide that rotting seaweed emits to serious pregnancy complications, alongside headaches and eye irritation. 

[Related: Horrific blobs of ‘plastitar’ are gunking up Atlantic beaches.]

While some types of seaweed make for awesome, sustainable products, this kind of sargassum is virtually useless. Using it as a fertilizer or compost is tricky, thanks to its high heavy metal content. Some scientists have argued for sinking the massive carpet of algae to the bottom of the ocean to use as carbon capture and storage. 

“There is a lot of carbon biomass associated with sargassum–about 3m tonnes in the Great Sargassum Belt,” Columbia University oceanographer Ajit Subramaniam tells The Guardian. 

For now, it’s probably best to keep an eye out for beach closures, event cancellations, and warnings as the season attracts more people—and smelly seaweed—toward the coast. 

The post A stinky, 5,000-mile-long wad of seaweed is about to gunk up Florida’s beaches appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The US government wants to round up the West’s feral cattle https://www.popsci.com/environment/feral-cattle-government/ Fri, 10 Mar 2023 02:00:00 +0000 https://www.popsci.com/?p=518384
Feral cattle emit methane, and sometimes get testy with local hikers.
Feral cattle emit methane, and sometimes get testy with local hikers. Abstract Aerial Art/Getty Imagwa

Yet grazing fees remain puzzlingly low.

The post The US government wants to round up the West’s feral cattle appeared first on Popular Science.

]]>
Feral cattle emit methane, and sometimes get testy with local hikers.
Feral cattle emit methane, and sometimes get testy with local hikers. Abstract Aerial Art/Getty Imagwa

This article was originally featured on High Country News.

Those who visit the Gila Wilderness in southern New Mexico these days have to grapple with a number of perils: rattlesnakes, extreme heat, bears, rugged terrain and, of course, raging bulls. Between 50 and 150 cattle are parading across the landscape, chomping native plants down to the nub, trampling riparian areas to dust, eroding landscapes, damaging habitat and oozing vast clouds of methane. Oh, and, according to the U.S. Forest Service, they’re also playing bullfighter with unsuspecting hikers.

This kind of behavior is, naturally, unacceptable to  the Gila National Forest, which manages the land in question. So, last summer, officials hired contract wranglers to round up the rambunctious cattle and evict them from the forest. After both contractors and cows were injured in the process, officials decided to take a more lethal tack, and, in February, sent out  helicopter-borne shooters to “attempt to eradicate them from the area,” as the agency’s decision put it.

It may be the most consequential action the federal government has taken in at least two decades to mitigate the impacts of overgrazing on public lands. It might even look like the start of real grazing policy reform, something conservationists have been pushing for since the 1970s. But there’s a catch: The only reason the Forest Service did something this time is that the bovines in question are feral — descendants of cattle abandoned by a belly-up livestock operator in the 1970s. Think of them as the bovine version of “orphaned” oil and gas wells, similarly sullying land and water and continuously belching methane.

The Forest Service’s justification for its lethal response, in a nutshell is: “Feral cattle are an invasive species that damage native habitats with their grazing behaviors.” That’s all fine and good, but you could take the “feral” off the front of that sentence and it would still be equally true. And yet the 1.5 million or so additional “authorized” cattle that are trampling the public lands are getting off scot-free. Same goes for Cliven Bundy, whose own semi-feral cattle have been illegally grazing public lands in Nevada for about 40 years, and there is still no plan to remove them. 

The Biden administration promised new grazing rules this spring, but early indications suggest we can expect another big nothing-burger. Several weeks ago, the administration announced this year’s grazing fees, although it hardly needed to go through the trouble, since for the 27th year in the last four decades, the fee once again amounts to just $1.35 per animal unit month — the minimum allowed by law. That’s all it takes to authorize a half-ton cow and her calf to gobble up 600 to 800 pounds of the public’s forage per month, destroy cryptobiotic soil and disgorge more climate-warming methane. Hell, you can’t get a cup of coffee for $1.35 these days!

8.09 million
Number of animal unit months (AUMs) for cattle authorized by the Bureau of Land Management for Western states in 2021. This does not include non-cattle livestock or cattle grazing on Forest Service lands. 

233 pounds per year 
Amount of methane emitted by a single cow-calf pair.

$6.10; $4.85; $20.10
Minimum fee per AUM for grazing on Utah state land; New Mexico state land; and non-irrigated private land (estimated average), respectively. 

The Bureau of Land Management says it uses market forces and other considerations to determine its grazing fees. Yet even though the market for cattle has changed substantially over the last 40 years, grazing fees haven’t budged. In 2000, for example, the price for a pound of live cattle was $0.70; today it’s $1.65. And yet in both years the grazing fee was the same. One might argue that low fees are necessary to keep cheeseburgers from becoming a luxury item. But since only about 5% of America’s 29 million beef cows graze public lands, the fee would have little impact on your tab at Blake’s Lotaburger, New Mexico’s favorite fast food beef joint. While in some ways it’s far better to have cows out on the range than confined to a feedlot, open-range cattle are a lot harder on the climate.

That’s the conclusion of a study published last year, which found that public-range cows not only emit methane (via enteric fermentation) and nitrous oxide (in manure), like all cattle do, they also wreck native plants and soils enough to shift the landscape from serving as a carbon sink to becoming a source of greenhouse gases. And they emit more methane because the energy content of public-land forage tends to be lower than the alfalfa or grain fed to pastured and feedlot cattle. “The forage from public lands, especially when high in exotic grasses,” the authors wrote, “is about the worst diet to feed cattle from a greenhouse gas perspective.” 

Low fees are only one of the places the feds have dropped the ball on grazing. The data shows that the BLM fails to meet its own standards for rangeland health. Agency-managed national monuments — including Bears Ears and Grand Staircase-Escalante national monuments in Utah and Canyon of the Ancients in Colorado — not only grandfathered in existing grazing, but allow for new leases, even when cow hooves are likely to damage cultural sites.

$12.77 million
Revenues to the BLM from grazing fees (for all livestock categories) in 2021.

$105.9 million
Amount budgeted to the Department of Interior for rangeland management in 2020, meaning the taxpayers are subsidizing grazing operations to the tune of $93 million per year. 

$2.5 billion
Total amount of livestock subsidies paid by the federal government to ranchers and farmers in the 11 Western states between 1995 and 2020. 

Congress has also failed to pass legislation making voluntary grazing permit retirements permanent. That would allow conservation groups to buy out a willing livestock operator’s permit, knowing that it would stay retired, something that seems like a win-win, though it is still adamantly opposed by the Sagebrush Rebel crowd. As things stand, retired permits can be put back into action 10 years down the road, which, you know, sort of defeats the purpose.

Admittedly, it’s hard to make meaningful reforms in this realm. To do so means pushing back against the mythology of cowboy culture and the outsized political influence livestock operators wield. Even the plan to shoot the feral cattle in the Gila ran up against this: The New Mexico Cattle Growers’ Association tried to stop the shoot, claiming it was animal cruelty. (A judge rejected the bid.) It’s an odd stance, given that the livestock industry advocates shooting wolves and other predators, ridding the public lands of wild horses, and, of course, ultimately eating its cows.

But then again, (almost) no one is suggesting that the feds start shooting “authorized” cattle. They’re just asking for a few common-sense reforms and maybe a grazing fee a little more in line with the cost of a cheeseburger. It shouldn’t be so difficult.

The post The US government wants to round up the West’s feral cattle appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Ecologists have declared war on this popular decorative tree https://www.popsci.com/environment/callery-pear-tree-ban/ Thu, 09 Mar 2023 02:00:00 +0000 https://www.popsci.com/?p=518118
Bradford pear trees in bloom.
Bradford pear trees in bloom. Getty Images

As of 2023, it is illegal to sell, plant or grow Callery pear trees in Ohio, with similar bans to hit other states in 2024.

The post Ecologists have declared war on this popular decorative tree appeared first on Popular Science.

]]>
Bradford pear trees in bloom.
Bradford pear trees in bloom. Getty Images

This article was originally featured on The Conversation.

When people think of spring, they often picture flowers and trees blooming. And if you live in the U.S. Northeast, Midwest or South, you have probably seen a medium-sized tree with long branches, covered with small white blooms – the Callery pear (Pyrus calleryana).

For decades, Callery pear – which comes in many varieties, including “Bradford” pear, “Aristocrat” and “Cleveland Select” – was among the most popular trees in the U.S. for ornamental plantings. Today, however, it’s widely recognized as an invasive species. Land managers and plant ecologists like me are working to eradicate it to preserve biodiversity in natural habitats.

As of 2023, it is illegal to sell, plant or grow Callery pear in Ohio. Similar bans will take effect in South Carolina and Pennsylvania in 2024. North Carolina and Missouri will give residents free native trees if they cut down Callery pear trees on their property.

How did this tree, once in high demand, become designated by the U.S. Forest Service as “Weed of the Week”? The devil is in the biological details.

A Kentucky extension specialist explains why Callery pears initially seemed like a solution, but have proved to be a major problem.

A quasi-perfect tree

Botanists brought the Callery pear to the U.S. from Asia in the early 1900s. They intentionally bred the horticultural variety to enhance its ornamental qualities. In doing so, they created an arboricultural wunderkind. As The New York Times observed in 1964:

“Few trees possess every desired attribute, but the Bradford ornamental pear comes unusually to close to the ideal.”

Modern varieties of Callery pear produce an explosion of white flowers in springtime, followed by deep green summer foliage that turns deep red and maroon in autumn. They also are very tolerant of urban soils, which can be highly compacted and hard for roots to penetrate. The trees grow quickly and have a rounded shape, which made them suitable for planting in rows along driveways and roadsides.

During the post-World War II suburban development boom, Callery pear trees became extremely popular in residential settings. In 2005 the Society of Municipal Arborists named the “Chanticleer” variety the urban street tree of the year. But the breeding process that created this and other varieties of Callery pear was producing unexpected results.

Cloning to produce an American original

To ensure that each Callery pear tree had bright blooms, red foliage and other desired traits, horticulturists created identical clones through a process known as grafting: creating seedlings from cuttings of trees with the desired characteristics.

This approach eliminated the messy complexity of mixing genes during sexual reproduction and ensured that when each tree matured, it would have the characteristics that homeowners desire. Every tree of a specific variety was a genetically identical clone.

Grafting also meant Callery pear trees could not make fruits. Some fruit trees, such as peaches and tart cherries, can fertilize their flowers with their own pollen. In contrast, Callery pear is self-incompatible: pollen on an individual tree cannot fertilize flowers on that tree. And since all Callery pears of a specific variety planted in a neighborhood would be identical clones, they would effectively be the same tree.

If a tree can’t produce fruits, it can’t disperse into natural habitats. Gardeners and landscapers thought it was perfectly safe to plant Callery pear near natural habitats, such as prairies, because the species was trapped in place by its reproductive biology. But the tree would break free from its isolation and spread seeds far and wide.

The great escape

University of Cincinnati botanist Theresa Culley and colleagues have found that as horticulturalists tinkered with Callery pears to produce new versions, they made the individuals different enough to escape the fertilization barrier. If a neighborhood had only “Bradford” pear trees, then no fruits could be produced – but once someone added an “Aristocrat” pear to their yard, then these two varieties could fertilize each other and produce fruits.

When Callery pear trees in gardens and parks started depositing seeds in nearby areas, wild populations of the trees became established. Those wild trees could pollinate one another, as well as neighborhood trees.

In today’s landscape, Callery pear is astonishingly fertile. The prolific flowering that horticulturists intentionally bred into these varieties now yields tremendous crops of pears each year. Although these little pears are generally not edible by humans, birds feed on the fruit, then fly away and excrete the seeds into natural habitats. Callery pear has become one of the most problematic invasive species in the eastern United States.

A thorny problem

Like other invasives, Callery pears crowd out native species. Once Callery pear seedlings spread from habitat edges into grasslands, they have advantages that allow them to dominate the site.

In my research lab, we have found that Callery pear leafs out very early in spring and drops its leaves late in fall. This enables it to soak up more sun than native species. We also have discovered that during invasion, these trees alter the soil and release chemicals that suppress the germination of native plants.

Callery pear is highly resistant to natural disturbances. In fact, when my graduate student Meg Maloney tried to kill the trees by using prescribed fires or applying liquid nitrogen directly to stumps after cutting the trees down, her efforts failed. Instead, the trees sprouted aggressively and seemingly gained strength.

Once Callery pear has escaped into natural areas, its seedlings produce very sharp, stiff thorns that can puncture shoes or even tires. This makes the trees a menace to people working in the area, as well as to native plants. Another nuisance factor is that when Callery pears bloom, they produce a strong odor that many people find unpleasant.

Currently, directly applying herbicides is the only known control for a Callery pear invasion. But the trees are so successful at spreading that poisoning their seedlings may simply create space for other Callery pear seedlings to establish. It is unclear how habitat managers can escape a confounding ecological cycle of invasion, herbicide application and re-invasion.

Banned but not gone

In response to work by the Ohio Invasive Plants Council and other experts, Ohio has taken the extraordinary step of banning Callery pear to thwart its ecological invasion into natural habitats. But the trees are common in residential areas across the state and have established vigorous populations in natural habitats. Ecologists will be working well into the future to maintain openness and biodiversity in areas where Callery pear is invading.

In the meantime, homeowners can help. Horticulturists recommend that people who have a Callery pear on their property should remove it and replace it with something that is not an invasive species. Few trees possess every desired attribute, but many native trees have visually attractive features and will not threaten ecosystems in your region.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The post Ecologists have declared war on this popular decorative tree appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Scientists test different gear for protecting clams from ‘crunching’ rays https://www.popsci.com/environment/clam-farming-ray-deterrents/ Wed, 08 Mar 2023 20:06:24 +0000 https://www.popsci.com/?p=518211
Whitespotted eagle ray swimming in the ocean.
Marine rays like the whitespotted eagle rays can take a bite out of aquaculture profits. Deposit Photos

Whitespotted eagle rays compete for the same shellfish people farm and dine on.

The post Scientists test different gear for protecting clams from ‘crunching’ rays appeared first on Popular Science.

]]>
Whitespotted eagle ray swimming in the ocean.
Marine rays like the whitespotted eagle rays can take a bite out of aquaculture profits. Deposit Photos

For gardeners, rabbits are a common cause of headaches, as they munch on a laundry list of vegetation, from berries and vegetables to perennials and woody plants. Aquaculturists like oyster farmers have the same problem, except not from fuzzy mammals. Marine rays are the main culprit, especially given that more than 80 percent of marine aquaculture consists of some of the rays’ favorite things to “crunch” on: bivalve mollusks.

[Related: Listen to the soothing sounds of a snacking stingray.]

When culturing hard clams (Mercenaria mercenaria), the bivalves must be placed at the bottom of a marine environment where they then grow to a sellable size. Clammers use mesh netting, plastic, or wire covers to protect their clam lease, similar to using a wire fence to try to keep rabbits out of a vegetable garden. However, the effectiveness of using these methods for highly mobile marine predators like rays hadn’t fully been tested until very recently. 

In a study published March 7 in the journal Aquaculture Environment Interactions, a team from Florida Atlantic University’s (FAU) Harbor Branch Oceanographic Institute and the Mote Marine Laboratory studied how the whitespotted eagle ray (Aetobatus narinari) interacted with clams enclosed in anti-predator materials. These rays are a formidable opponent with strong jaws, crushing fused teeth, and nimble pectoral fins. 

In a large outdoor tank, the team used aerial and underwater videos to assess the rays’ responses to various anti-predator materials. One plot of clams were placed inside polyester mesh bags that also had a latex net coating, another under a high density polyethylene (HDPE) netting, and a third under chicken wire cover netting. The control plot of clams were unprotected. 

According to NOAA Fisheries, more than 80 percent of marine aquaculture production in the US consists of bivalve mollusks such as oysters, clams, and mussels. However, it’s not just humans who enjoy eating these shellfish, so do marine rays. They like to “crunch” on clams, which can sometimes take a big bite out of clammers’ profits. FAU Harbor Branch Oceanographic Institute

After the completion of each trial, the team noted the number of crunched clams and how frequently the rays visited the various randomized patches. While the undersea hunters were capable of consuming clams through bags, the anti-predator treatments reduced clam mortality four- to tenfold compared to control plots where the clams were unprotected. The double-layered treatments (bags with cover netting) had the lowest clam mortality.

“Based on our findings, many of the current anti-predator grow-out strategies used in the hard clam shellfish aquaculture industry appear capable of reducing predation by large predators like whitespotted eagle rays,” said study co-author Matt Ajemian, director of the Fisheries Ecology and Conservation Lab at FAU, in a statement. “In par­ticular, bag treatments with cover nettings achieved the highest clam survival rates, although it is important to note that this did not appear to completely deter rays from interacting with the gear.”

[Related: Tiger sharks helped scientists map a vast underwater meadow in the Bahamas.]

The observations suggest that the rays appear to be capable of interacting with the aquaculture gear for longer periods of time, which potentially diverts them from other natural feeding habitats such as sand and mud flats.

“These habitat associations could expose these sensitive animals to other risks, although we are just beginning to understand them and admittedly have a lot more to learn,” said co-author Brianna Cahill, a research technician at Stony Brook University, in a statement. “Contrary to what we expected, rays did not prefer control plots (mimicking natural conditions) over treatment plots with anti-predator gear. This suggests a real possibility that these rays are interacting with shellfish aquaculture gear in the wild, as suggested by our clamming industry partners.”

The researchers also observed the rays interact with the treatments on the deterrents, including using their lower dental plate to dig through the sediment at the bottom of the tank to access the clams in the unprotected control plots and to move the gear.  

More testing could reveal whether chicken wire, a common deterrent in Florida, is actually beneficial. Earlier studies suggest that the electric field of the metal could be detected by rays and sharks and might overstimulate them, protecting the farmed shellfish. 

“Given the frequency of interactions we observed with chicken wire in our experiment, we question whether chicken wire is a deterrent, an attractant, or neutral, as it may not have a powerful enough signal to influ­ence the rays,” said Ajemian. “Still, we have more questions than we started with, and look forward to investigating this further with other species and deterrent types.”

The post Scientists test different gear for protecting clams from ‘crunching’ rays appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This floating wind turbine just generated its first kilowatt hour of power https://www.popsci.com/technology/floating-wind-turbine-prototype/ Wed, 08 Mar 2023 19:00:00 +0000 https://www.popsci.com/?p=518163
X1 Wind's X30 floating wind turbine prototype off the Canary Islands coast
The 1:3 scale prototype just generated its first kWh of power off the Canary Island coast. X1 Wind

X1 Wind's X30 prototype utilizes a tension leg platform to reduce its impact on the sea floor.

The post This floating wind turbine just generated its first kilowatt hour of power appeared first on Popular Science.

]]>
X1 Wind's X30 floating wind turbine prototype off the Canary Islands coast
The 1:3 scale prototype just generated its first kWh of power off the Canary Island coast. X1 Wind

A floating wind turbine prototype has generated its first 1kWh of power off the coast of Spain’s Canary Islands, marking a major milestone in its makers’ goals to begin manufacturing their novel design at scale. Not to mention, it’s one of the first deployed floating turbines with a tension leg platform (TLP), an innovation that drastically reduces damage to sea floors.

Created by Spain-based X1 Wind, the startup company’s X30 floating prototype is the result of years of planning and fine-tuning, as well as includes several unique components and adaptations. At one-third the size of the final proposed turbine, X30 utilizes PivotBuoy, an augmented single point mooring (SPM) setup that allows the floating platform to passively align with wind currents, much like a classic weathervane. This eliminates the requirement of an active yaw actuator and ballast systems, thus minimizing the turbine’s overall weight and maintenance needs.

[Related: A wind turbine just smashed a global energy record—and it’s recyclable.]

X30’s tension leg platform addition provides boosted environmental benefits. In this setup, a TLP is kept stable and at rest using steel rods anchored to the sea floor with either suction anchors or caissons. The legs remain stretched via the turbine’s platform tension beneath the water line, and its braces will limit the turbine’s vertical movement atop the waves.

From there, a 1.4km underwater cable feeds the X30 prototype’s energy generation into the Oceanic Platform of the Canary Islands’ (PLOCAN) existing offshore test site smartgrid.

X1 Wind’s floating turbine design was first envisioned in 2012 by company cofounder Carlos Casanovas while a student at MIT. Since then, Casanova’s team has worked to bring the concept into the real world. The project first began its design phase in April 2019, before moving onto its manufacturing stage throughout the onset of the COVID-19 pandemic. Final assembly and construction finished in October 2022 in 50m deep waters off of the Canary Islands.

Once thought a pipe dream, offshore floating wind turbines are increasingly showing themselves to be an extremely promising asset in sustainable global energy generation. Speaking in 2022, Axelle Viré, an associate professor of Floating Offshore Wind at Delft University of Technology, estimated that floating wind turbines could be expected to generate between 150-200 gigawatts of energy in the coming decades. Currently, fixed wind turbines only generate 12 gigawatts. 

[Related: Scientists think we can get 90 percent clean energy by 2035.]

“Floating wind is set to play a vital role supporting the future energy transition, global decarbonisation and ambitious net-zero targets,” Casanovas stated in a statement on Tuesday. “Today’s announcement marks another significant stride forward for X1 Wind accelerating towards certification and commercial scale ambitions to deliver 15MW platforms and beyond in deepwater sites around the globe.”

X1 Wind hopes to move into full-scale production after its prototype testing is completed, with their floating wind turbines each generating 15mW of clean energy anchored in deep sea environments around the world.

The post This floating wind turbine just generated its first kilowatt hour of power appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A tiny fish is more genetically diverse than we thought. Here’s why that matters. https://www.popsci.com/environment/sand-lance-genetic-diversity/ Wed, 08 Mar 2023 02:00:00 +0000 https://www.popsci.com/?p=517834
The sand lance, a small forage fish, has two populations separated by the Scotian Shelf off eastern Canada. This genetic diversity could affect its future prospects.
The sand lance, a small forage fish, has two populations separated by the Scotian Shelf off eastern Canada. This genetic diversity could affect its future prospects. HUM Images/Universal Images Group via Getty Images

The little sand lance is unexpectedly split in two, revealing a breadth of genetic diversity that could help it survive.

The post A tiny fish is more genetically diverse than we thought. Here’s why that matters. appeared first on Popular Science.

]]>
The sand lance, a small forage fish, has two populations separated by the Scotian Shelf off eastern Canada. This genetic diversity could affect its future prospects.
The sand lance, a small forage fish, has two populations separated by the Scotian Shelf off eastern Canada. This genetic diversity could affect its future prospects. HUM Images/Universal Images Group via Getty Images

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

On land, rivers and mountain ranges can divide species into genetically distinct populations. In the vast expanse of the ocean, where there is seemingly little to stop fish and other sea creatures from going where they please, scientists have long expected marine species to find it easier to mix. But ongoing research shows there’s more than just geographic barriers keeping populations separate, and marine species often have a higher genetic diversity than anticipated.

Hannes Baumann, a marine scientist at the University of Connecticut, says that for years the prevailing notion was that species in the ocean didn’t form separate populations. “But the last 20 years has demolished that concept,” he says. “Now everywhere we look we see differentiation.”

Protecting that genetic diversity is a focus of conservationists. At a recent meeting of the United Nations Convention on Biological Diversity (CBD), the agency’s members adopted a new framework setting overarching goals for conservation efforts, including preserving genetic diversity within species to safeguard their ability to adapt to changing conditions.

“Genetic diversity is especially important for resilience,” says Sebastian Nicholls, from the Pew Charitable Trusts’ ocean conservation program, which works closely with CBD member states to help them meet their commitments on marine conservation issues. “If there is too little diversity, a species may be susceptible to a single pathogen or environmental stressor.”

A strong example of the value of that diversity comes from the recent discovery by Baumann and his colleagues that the northern sand lance, an important forage fish, is actually two populations.

By sequencing the genomes of hundreds of northern sand lance living from Greenland to New Jersey, the scientists found that the fish population is split in two—one group dwells north of the Scotian Shelf, off the east coast of Canada, and one lives farther south.

There is something curious about the Scotian Shelf, says Baumann. No obvious barrier prevents fish from crossing the divide and mixing with their neighbors, but it seems that their offspring do not survive when they do. Baumann suspects a change in water temperature centered around the shelf is to blame—the southern waters are too warm for the cold-adapted northern fish, and vice versa. The shelf also separates populations of other species, including lobsters, scallops, and cod. “This confirms with yet another species that the Scotian Shelf is almost a universal genetic barrier,” says Baumann.

More than a curiosity, the genetic minutiae of this little fish is surprisingly important. Sand lance are a cornerstone of ocean ecosystems. Just about everything eats the slender forage fish, including 72 species of fishes, birds, and mammals.

Theoretically, the existence of a population adapted to warmer water should help the species weather the stresses of climate change because it is more likely to thrive and spread northward as the ocean warms. But that doesn’t mean we should give up on their northern neighbors, since other unique adaptations could become important in the future, Baumann says. “Even if we don’t know which variant is the important one, we need to preserve all of them.”

The problem is, scientists know very little about the genetic diversity of most marine species, especially in the deep sea, says Nicholls. Many marine ecosystems are remote and difficult to get to, making it challenging to understand what diversity actually exists. “We don’t really know what’s out there; we’re discovering new species all the time,” he says, “so it’s even harder to get information about genetic diversity.”

Nicholls says the best tools to preserve both the genetic diversity we know about, and that which we don’t, are strong networks of marine protected areas. At the CBD meeting, members also agreed on a target of protecting 30 percent of coastal and marine areas by 2030. “If we protect enough of the ocean, populations can replenish themselves and spill over into adjacent areas, maintaining diversity both within and outside their boundaries,” Nicholls says.

This article first appeared in Hakai Magazine and is republished here with permission.

The post A tiny fish is more genetically diverse than we thought. Here’s why that matters. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Get a high-tech tour of the long-lost Ironton shipwreck discovered in the Great Lakes https://www.popsci.com/technology/ironton-shipwreck-lake-huron/ Tue, 07 Mar 2023 17:30:00 +0000 https://www.popsci.com/?p=517840
Underwater image of sunken ship, Ironton, in Lake Huron
The three-masted 'Ironton' has been lost at the bottom of Lake Huron for nearly 130 years. NOAA/ Undersea Vehicles Program UNCW

With help from self-driving boats and powerful sonar, the missing 19th century ship was finally discovered.

The post Get a high-tech tour of the long-lost Ironton shipwreck discovered in the Great Lakes appeared first on Popular Science.

]]>
Underwater image of sunken ship, Ironton, in Lake Huron
The three-masted 'Ironton' has been lost at the bottom of Lake Huron for nearly 130 years. NOAA/ Undersea Vehicles Program UNCW

A 191-foot-long sunken ship missing beneath the waves of Lake Huron for almost 130 years has been discovered nearly intact with the help of self-driving boats and high powered sonar imaging. 

At around 12:30 AM on September 24, 1894, a three-masted schooner barge called the Ironton collided head-on with the wooden freighter, Ohio, after being cut loose from a tow line in the face of inclement weather. Both vessels quickly sank beneath the waves, and although all of the Ohio’s crew escaped aboard a lifeboat, only two of Ironton’s crew survived the ordeal. For decades, both pieces of history rested somewhere along the bottom of Lake Huron, although their exact locations remained unknown.

[Related: Watch never-before-seen footage of the Titanic shipwreck from the 1980s.]

In 2017, however, researchers at Thunder Bay National Marine Sanctuary collaborated with the National Oceanic and Atmospheric Administration’s (NOAA) Office of Ocean Exploration and Research to begin search efforts for the roughly 100 ships known to have sunk within the 100-square-miles of unmapped lakebed. Using state-of-the-art equipment including multibeam sonar systems aboard the Great Lakes Environmental Research Lab’s 50-foot-long research vessel, RV Storm, the team scoured the sanctuary’s waters for evidence of long-lost barges, schooners, and other boats.

In May 2017, the teams finally located Ohio’s remnants, although Ironton eluded rediscovery. Two years later, Thunder Bay National Marine Sanctuary set out on another expedition, this time partnered with Ocean Exploration Trust, the organization founded by Robert Ballard, famous for his discoveries of the Titanic, Bismarck, and USS Yorktown. For their new trip, researchers also brought along BEN (Bathymetric Explorer and Navigator), a 12-foot-long, diesel-fueled, self-driving boat built and run by University of New Hampshire’s Center for Coastal and Ocean Mapping. 

By triangulating the Ohio’s now-known location, alongside wind and weather condition records for the day of the ship’s demise, RV Storm got to work with BEN’s high-resolution multibeam sonar sensor to map Lake Huron’s floors for evidence of the Ironton. With only a few days’ left to their trip, researchers finally were rewarded with 3D sonar scans of a clear, inarguable shipwreck featuring three masts.

Archaeology photo
Sonar imaging of the Ironton Credit: Ocean Exploration Trust/NOAA

[Related: For this deep-sea archaeologist, finding the Titanic at the bottom of the sea was just the start.]

Video footage provided by an underwater remotely operated vehicle (ROV) the following month confirmed their suspicions—there lay the Ironton, almost perfectly preserved thanks to Lake Huron’s extremely cold, clear waters. “Ironton is yet another piece of the puzzle of [the region’s] fascinating place in America’s history of trade,” Ballard said in a statement, adding that they “look forward to continuing to explore sanctuaries and with our partners reveal the history found in the underwater world to inspire future generations.”

Future research expeditions and divers searching for the Ironton’s exact resting place will have no trouble going forward—Thunder Bay National Marine Sanctuary plans to deploy one of its deep-water mooring buoys meant to mark the spot, as well as warn nearby travelers to avoid dropping anchors atop the fragile remains. The Ironton’s made it this far in nearly pristine condition, after all.

The post Get a high-tech tour of the long-lost Ironton shipwreck discovered in the Great Lakes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The ‘High-Seas Treaty’ to protect marine life in the open ocean finally makes progress https://www.popsci.com/environment/high-seas-treaty-marine-life/ Mon, 06 Mar 2023 15:00:00 +0000 https://www.popsci.com/?p=517319
A pod of dolphins swimming together in blue water.
Dolphins and other species like salmon, turtles, and tuna can be found close to shore, but spend most of their lives in the high seas during long migrations. Deposit Photos

Delegates from more than 100 countries have agreed to language for the new UN treaty.

The post The ‘High-Seas Treaty’ to protect marine life in the open ocean finally makes progress appeared first on Popular Science.

]]>
A pod of dolphins swimming together in blue water.
Dolphins and other species like salmon, turtles, and tuna can be found close to shore, but spend most of their lives in the high seas during long migrations. Deposit Photos

It’s been a long time coming, but on March 4, representatives from more than 100 countries agreed on language for a new United Nations (UN) treaty to protect marine life. Nicknamed the High-Seas Treaty, the agreement reached by delegates of the Intergovernmental Conference on Marine Biodiversity of Areas Beyond National Jurisdiction (BBNJ), is the culmination of talks facilitated by the UN that first began over 20 years ago. 

The planet’s marine life is facing multiple threats from overfishing, the effects of climate change, fossil fuel extraction, and escalating noise from vessel traffic. A 2021 study published in the journal Nature estimates that the shark and ray species that live in the open ocean have declined over 70 percent since 1970. Now, possible deep sea mining for minerals is putting unprotected areas of the world’s oceans in more danger.

[Related: The future of American conservation lies in restoration, not just protection.]

The High-Seas Treaty aims to create more marine-protected areas and more conservation measures in the high seas–a huge expanse of ocean covering almost 50 percent of the world. While there are international agreements and organizations that regulate the high seas, most focus on economic activities (shipping, fishing, mining, etc.). Environmental advocates say that these regulations do not always take biodiversity into account and the high seas are home to human rights abuses and laws are limited

Marine protected areas have been shown to benefit both fish and human interests. A 2022 study published in the journal Science found that carefully placed no-fishing zones like the 582,578 square mile wide Papahānaumokuākea Marine National Monument in Hawaii can help restore the populations of tuna and other large fish species.

The treaty also establishes basic ground rules for conducting environmental impact assessments for commercial activities in the oceans. Individual countries typically are in charge of the sea floor and waters about 200 nautical miles from their shores before the high seas begins. Currently, the world’s open oceans have no international body or agreement that primarily focuses on protecting marine life and this treaty aims to change that if enacted. Now that the language of the agreement is settled, countries will need to formally adopt it and then ratify the treaty itself. This ratification step usually requires legislative approval.

The high seas are home to a wealth of biodiversity, from tiny phytoplankton up to massive blue whales. It’s also where some of Earth’s most mysterious creatures like anglerfish and hatchetfish live. Many species that are found closer to shore like salmon, dolphins, turtles, and tuna, also spend a lot of their lives in the high seas during long migrations, which is partially why agreements like this are needed to extend the protections beyond national boundaries.  

[Related: World governments strike historic deal to protect planet’s biodiversity.]

The legally binding pact is also seen as a crucial component in the effort to reach a target to bring 30 percent of the world’s land and sea under protection by 2030 called 30 by 30. This agreement was struck at the United National Biodiversity Conference (COP 15) in December 2022

“Today the world came together to protect the ocean for the benefit of our children and grandchildren,” Assistant Secretary of State for Oceans and International Environmental and Scientific Affairs of the United States Monica Medina told The New York Times. “We leave here with the ability to create protected areas in the high seas and achieve the ambitious goal of conserving 30 percent of the ocean by 2030.”

The post The ‘High-Seas Treaty’ to protect marine life in the open ocean finally makes progress appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Lichens may help forecast sea level rise https://www.popsci.com/environment/sea-level-rise-lichen/ Fri, 03 Mar 2023 23:00:00 +0000 https://www.popsci.com/?p=516957
Some lichen species are particularly sensitive to salt. Because some lichens live for decades, they can be a great gauge of whether a site has faced flooding or saltwater intrusion.
Some lichen species are particularly sensitive to salt. Because some lichens live for decades, they can be a great gauge of whether a site has faced flooding or saltwater intrusion. DepositPhotos

One of the great infrastructure challenges of the next few decades is to figure out which coastal sites should be abandoned and which can be saved. Lichens can help.

The post Lichens may help forecast sea level rise appeared first on Popular Science.

]]>
Some lichen species are particularly sensitive to salt. Because some lichens live for decades, they can be a great gauge of whether a site has faced flooding or saltwater intrusion.
Some lichen species are particularly sensitive to salt. Because some lichens live for decades, they can be a great gauge of whether a site has faced flooding or saltwater intrusion. DepositPhotos

This article is from Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

The clock is ticking for many low-lying coastal areas. Sea level is rising faster than at any time in recorded history, promising to radically redraw the map. At a broad scale, we know this to be true. But knowing precisely which plots will be inundated and which will remain dry land is a much more daunting task. That effort may have an ally almost no one would have guessed: one of the smallest and least conspicuous forms of life—lichens.

More than 18,000 species of lichens have been described worldwide. Each is a community made up of one or more species of fungus and an alga or cyanobacteria. This combination has enabled lichens to survive in diverse and often hostile conditions, everything from tropical heat to bitter Antarctic cold.

To scratch out its niche, each species has developed to tolerate different levels of temperature, light, air quality, and other factors. Because of this sensitivity, lichens are already used by scientists to gauge environmental disturbance, such as the influence of logging or nitrogen pollution. Lichens also vary in their salt tolerance. It’s this property, says botanist Roger Rosentreter at Idaho’s Boise State University, that makes them so useful in understanding sea level rise.

“Lichens are a good indicator of site history,” says Rosentreter, who has studied lichens and related species for over 40 years. Specifically, the species of lichens that grow on a coastal site may be an effective indicator of low levels of saltwater intrusion and spray, which can be caused by infrequent flooding or storm events. Since sea levels are continuing to rise, any site that has experienced occasional salt water in the past is likely to see more frequent flooding and storm effects in the future.

Recently, Rosentreter and his wife, fellow Boise State botanist Ann DeBolt, studied the lichen communities of two state parks near West Palm Beach, Florida. One park, on a barrier island, is subject to frequent salt spray and storm flooding, while the other is inland just 500 meters away. The scientists found two surprisingly different lichen communities at each site. By comparing the two, they started building a list of lichen species that can be useful indicators of the long-term or historical presence of salt water.

Ocean photo
Left: the powdery medallion lichen is very sensitive to salt but is not a good indicator of whether a site has experienced the first effects of sea level rise. Photo by Vitaly Charny. Right: the ruffled blue jellyskin is also sensitive to salt, but its slow growth makes it a better indicator. Photo by David Bird

It takes more than just salt sensitivity to make a lichen a good indicator of whether a site has experienced the first effects of sea level rise. The lichen’s own life history also comes into play.

Species like the powdery medallion lichen (left photo) can be killed if subjected to too much salt water by a storm or flood. But this lichen’s quick reproduction lets it swiftly recolonize after the sea recedes. Larger species with slower growth and reproduction, and also low salt tolerance, like the ruffled blue jellyskin (right photo), can better tell the saltwater history of a site. These salt-intolerant lichens could not have survived and grown if a saltwater event like storm spray or flooding had occurred at any point during their life. Since some lichen species can live for decades or longer, the record they provide can be both hyperlocal in space and extensive in time.

Of the 48 different lichen species Rosentreter and DeBolt found at their two Florida survey sites, 11 are reliable indicators of salt water’s presence. Seven of the species only like to grow in places with very low saltwater impact, while four are salt tolerant, so finding them growing suggests the site has a moderate history of salt and a higher risk of being affected by rising seas.

In general, they found that the species that best indicate if a site will be relatively safe from sea level rise and saltwater inundation are lichens that are larger and leafier and often light green or blue in color. But lichens can be tricky to identify, and some promising indicator species look quite similar to less useful ones. “You’ve got to be at least an intermediate plant person to figure it out,” says Rosentreter.

“The good thing is, these aren’t just in Florida. They’re in the whole southeast coastal plain,” he says. Reports on iNaturalist, for instance, put the ruffled blue jellyskin all along the US East Coast and beyond.

Borja G. Reguero, an expert in conserving natural defenses against sea level rise at the University of California, Santa Cruz, who was not involved in the research, sees parallels between how coastal communities and lichens handle environmental change. “It makes a lot of sense to find those indicator [species] where the frequency of spray or flood events are over a threshold where some species are not able to live anymore,” he says. “You could say the same thing about humans and coastal infrastructure. You get to a tipping point where specific neighborhoods get flooded so regularly that they don’t get insurance.”

Modern science offers an array of tools to study sea level rise, from satellite data to groundwater and soil sampling. Lichens could be another way to see, at smaller site-specific scales, where the sea is coming next, and just as importantly, where it is not.

This article first appeared in Hakai Magazine and is republished here with permission.

The post Lichens may help forecast sea level rise appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
MasterChef inspired an edible medical sensor https://www.popsci.com/technology/medical-sensor-seaweed/ Thu, 02 Mar 2023 21:00:00 +0000 https://www.popsci.com/?p=516711
Research student holding graphene seaweed hydrogel in gloved hand
This seaweed-infused sensor could become a medical industry mainstay. University of Sussex

It's vegan, and that's not even the most sustainable part.

The post MasterChef inspired an edible medical sensor appeared first on Popular Science.

]]>
Research student holding graphene seaweed hydrogel in gloved hand
This seaweed-infused sensor could become a medical industry mainstay. University of Sussex

A new era of biodegradable medical sensors may be on the horizon thanks in part to competitive cooks. According to Conor Boland, a materials physics lecturer in the University of Sussex’s School of Mathematical and Physical Sciences, watching contestants on MasterChef utilize seaweed for a vegan gelatin alternative in desserts made him wonder where else those versatile properties could come in handy.

The results, recently published in the journal, ACS Sustainable Chemistry & Engineering, detail how Boland’s team combined graphene with natural materials including rock salt, seaweed, and water to create a new health sensor that is not only biodegradable and edible, but potentially more accurate than existing synthetic options.

[Related: Kombucha may have a surprising new use in tech.]

To make their new, effective monitor material, researchers first created a thin film using a mixture of seaweed—a natural insulator—and electrically conductive graphene. Once soaked in a salt bath, the substance absorbed the water to form a soft, spongy hydrogel akin to the standard synthetic adhesive sensors seen in hospitals. Unlike existing products, however, the new, natural biomedical sensor is so thin and lightweight, the authors described the seaweed mixture as resembling a second skin or temporary tattoo.

Bio-technological hybrid products are increasingly coming to the forefront as cutting edge, sustainable, and innovative advances across a variety of fields—from “brain organoid intelligence” models in computers, to circuit boards built from dried kombucha cultures. Echoing the new seaweed sensors’ conceit, recent developments in biodegradable smart bandages that promise faster healing times. And it’s not seaweed ‘s first tech rodeo—the watery plant serves as a muse for all manner of products and materials lately, including new bioplastics, sustainable farming, and biofuel.

[Related: Why seaweed is a natural fit for replacing certain plastics.]

The medical sensor industry is extremely lucrative—valued at over $6 billion in 2021, with estimates to rise to as much as $10 billion by 2027. Despite advances in technology, the discarded synthetic products still present a huge waste problem. As Boland explains, “The mass production of unsustainable rubber and plastic based health technology could, ironically, pose a risk to human health through microplastics leaching into water sources as they degrade.”

For Boland, recently becoming a parent provided an additional frame for the importance of his team’s work. “As a new parent, I see it as my responsibility to ensure my research enables the realization of a cleaner world for all our children,” he said, although without specifying if the edible sensors are appetizing to toddlers. That said, you can always try your hand at homemade agar-agar jelly.

The post MasterChef inspired an edible medical sensor appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Beavers, snails, and elephants are top grads from nature’s college of engineering https://www.popsci.com/environment/beavers-ecosystem-engineers/ Tue, 28 Feb 2023 14:00:00 +0000 https://www.popsci.com/?p=515503
Beaver driving construction truck with logs on back to symbolize ecosystem engineer. Illustrated in purple, yellow, and brown.
Christine Rösch for Popular Science

Even your cat’s shadow might count as ‘ecosystem engineering.’

The post Beavers, snails, and elephants are top grads from nature’s college of engineering appeared first on Popular Science.

]]>
Beaver driving construction truck with logs on back to symbolize ecosystem engineer. Illustrated in purple, yellow, and brown.
Christine Rösch for Popular Science

WHEN EUROPEANS first arrived in North America, the continent was home to between 60 and 400 million beavers. Streams from the rainy Pacific Northwest to the Utah desert were strung with their dams. The fur trade of the following centuries nearly wiped the animals out, and in their place, colonists built their own dams, replacing the dense tangles of beaver wetlands with quiet, deep reservoirs and plowed fields.

Beavers, like humans, shape their ecosystems not just by eating or excreting, but also by building and tearing down. And because of those similarities, the rodents have become North America’s best-known “ecosystem engineers.”

But the scientific idea of ecosystem engineering wasn’t born in a beaver lodge—it came from Israel’s Negev Desert. The pea-size rock-eating snail sticks to the underside of limestone boulders and has a peculiar means of accessing food: It chews through stone to get the lichen living inside. The tiny mollusks then poop out so much of the rock that they literally build the desert soil. Measurements taken by ecologists in the 1980s showed that their gritty feces add as much sediment in the course of a year as windblown dust.

When one of those ecologists, Clive Jones of the Cary Institute of Ecosystem Studies in New York, visited the desert in 1987, he saw that snails weren’t the only animals shaping the landscape. Most of its organisms, from animals down to bacteria, changed how water flowed in the arid environment. Porcupine pits and anthills trapped runoff. Bulbed plants broke up hard-packed earth, trapping moisture. Colonies of microbes covered slopes in waterproof sheets.

Jones and his colleagues coined the term ecosystem engineering in 1994 to connect the processes they saw in that desert to similar ones all over the world. Kelp forests create calm nurseries for fish and crabs on coasts. Terrestrial forests collect water. In all these cases, the actions, or even the body of an organism itself is reshaping the world—and not as part of a food chain. An elephant eating leaves isn’t engineering—but as soon as it rips down a tree, it is.

Since the idea entered the scientific mainstream, ecologists have debated what counts as an engineer, given that almost any organism could conceivably qualify for the definition. Does an action have to be intentional, as beavers’ dam-building appears to be? Does it need to shape the lives of other organisms immensely?

Jones says no to both. From the perspective of an ecologist, it doesn’t matter whether an elephant means to rip up a bush or eat a specific plant—the fact is that it does. And the effect doesn’t need to be earth-shattering. An animal’s shadow is the most trivial example of engineering. “No other organism cares about the ephemeral shadow caused by the cat walking outside my window,” Jones says. But the shadow has the same type of effect as a beaver’s dam in that they both change the heat, light, water, and air that other organisms depend on.

“To understand how an ecosystem works, you need to take all those things into account,” Jones says. If you think about beavers’ eating habits—consuming the leaves and soft inner tissue of wetland trees—you’d assume they were an engine of environmental destruction, leaving clear-cuts in their wake. Instead, studies show that these rodents create stunningly biodiverse wetland habitats. Similarly, tens of millions of bison once roamed from what is now Louisiana to the Canadian boreal forest, engineering the plains differently from the cattle that replaced them. Bison, unlike cattle, plow snow on the winter prairie and wallow up huge sand pits in the summer, helping create grasslands that support more birds and native plants.

Understanding how species alter landscapes isn’t just an intellectual exercise—it’s critical for figuring out how to preserve fast-disappearing habitats, or how to restore lost ones. “Humans can imitate the way in which ecosystem engineers do their work,” Jones says. “Of course, why bother to build a wetland when you can conserve beavers, and they’ll do it for you?”

Read more PopSci+ stories.

The post Beavers, snails, and elephants are top grads from nature’s college of engineering appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why one California beach town is cracking down on balloons https://www.popsci.com/environment/california-beach-balloon/ Tue, 28 Feb 2023 02:00:00 +0000 https://www.popsci.com/?p=515462
Surfriders' beach cleanups organized in 2022 collected a total of nearly 2,500 balloons.
Surfriders' beach cleanups organized in 2022 collected a total of nearly 2,500 balloons. Getty Images

Laguna Beach said the decision would keep litter out of the ocean and prevent potential fires.

The post Why one California beach town is cracking down on balloons appeared first on Popular Science.

]]>
Surfriders' beach cleanups organized in 2022 collected a total of nearly 2,500 balloons.
Surfriders' beach cleanups organized in 2022 collected a total of nearly 2,500 balloons. Getty Images

This article was originally featured on Grist.

Celebrations in a beachside California city will soon have to take place without an iconic, single-use party favor: balloons.

The city council of Laguna Beach, about 50 miles southeast of Los Angeles, banned the sale and use of all types of balloons on Tuesday, citing their contribution to ocean litter as well as risks from potential fires when they hit power lines. Starting in 2024, people using balloons on public property or at city events could incur fines of up to $500 for each violation. (Balloons used solely within people’s homes are exempt.)

The ban is part of a growing nationwide movement to restrict balloon use, as well as a broader item-by-item push to restrict problematic single-use products like plastic straws and bags. For now, most balloon-related state and city legislation only targets the intentional release of helium-filled balloons, but experts say outright bans on using any type outside are gaining traction as people better understand their environmental consequences. Nantucket, Massachusetts, in 2016 banned any balloon filled with a gas that’s lighter than air, and there are similar bans in places like East Hampton, New York, and Solana Beach and Encinitas, California.

“Plastic in the ocean and environment generally is gaining more attention,” Chad Nelsen, chief executive of the nonprofit environmental organization Surfrider Foundation, told Grist. “It’s good that people are looking at these disposable, single-use items that we have been using every day and not thinking about the consequences.” He said California beach cleanups organized by Surfrider in 2022 collected a total of nearly 2,500 balloons.

Balloons, especially those filled with helium, often become ocean pollution after just a few hours of use. Those made of latex — a kind of soft, synthetic or natural material that may take decades to break down — can be mistaken for food by marine animals and birds. When ingested, latex can conform to birds’ stomach cavities, causing nutrient deficiency or suffocation. 

Balloons made of mylar, a kind of plastic coated in thin metal, basically never break down. “They stick around truly until the end of time,” said Kara Wiggin, a doctoral researcher at the Scripps Institution of Oceanography. The plastic strings attached to them can strangle marine life and then chip into microplastics that contaminate drinking water and the food chain.

Mylar balloons can also get tangled in power lines, leading to power outages or fires. According to the city of Riverside, California, balloons caused more than 1,300 minutes of power outages for its publicly owned water and electric utility in 2021. Other cities and utilities report thousands of ratepayers losing power each year when balloons get caught in power lines.

Wiggin said balloons are just a small part of society’s broader addiction to single-use items, but that banning them is “low-hanging fruit.” “We don’t throw things purposefully into the environment, but we often do that with balloons,” she told Grist. “That’s a practice that needs to be stopped.”

Nelsen said there are plenty of balloon-free ways to keep the fun going, including paper-based decorations, streamers, flags, kites, and pinwheels — many of which can be safely reused dozens of times. “Let’s find a way to celebrate kids’ birthdays without killing marine life,” he said.

This article originally appeared in Grist. Grist is a nonprofit, independent media organization dedicated to telling stories of climate solutions and a just future. Learn more at Grist.org.

The post Why one California beach town is cracking down on balloons appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Scientists just rediscovered a rare, fungi-eating ‘fairy lantern’ https://www.popsci.com/environment/fairy-lantern-japan-extinct-fungi/ Mon, 27 Feb 2023 16:30:00 +0000 https://www.popsci.com/?p=515517
A moniker fairy lantern plant detonates, with its petals unfurling.
As the moniker fairy lantern denotes, it looks like a tiny lantern that illuminates the dark forest floor. Kenji Suetsugu

The genus Thismia’s biogeographical spread is still baffling botanists.

The post Scientists just rediscovered a rare, fungi-eating ‘fairy lantern’ appeared first on Popular Science.

]]>
A moniker fairy lantern plant detonates, with its petals unfurling.
As the moniker fairy lantern denotes, it looks like a tiny lantern that illuminates the dark forest floor. Kenji Suetsugu

In a phenomenon that sounds straight out of a sci-fi movie or kooky musical, there are some plants on Earth that actually eat other organisms. The genus Thismia, commonly called fairy lanterns, is a rare but widely dispersed plant genus that is primarily spread across tropical regions of Asia, Australia, and South America and the subtropical and temperate regions in Japan, New Zealand, Australia, and the United States. 

Despite being found in forests and multiple regions, scientists know very little about the mysterious flora’s ecology. They live underground, have colorful flowers that rise about the soil, and lack green leaves and chlorophyll to make their own food using photosynthesis like the vast majority of plants.Instead, they snack on fungi like arbuscular mycorrhizal fungi.

[Related: Young trees have special adaptations that could save the Amazon.]

Only 90 species have been found, but one that was believed to be extinct has been rediscovered. A team of scientists describe the rediscovery of a Thismia species in a study published February 27 in the journal Phytotaxa. The species named Thismia kobensis was originally discovered in Kobe City, Japan in 1992, but the building of an industrial complex supposedly destroyed the entire population. Thirty years later, biologist Kenji Suetsugu from Kobe University and his colleagues rediscovered the plant in Sanda City, about 18 miles away. 

The team describes Thismia kobensis in new detail, adding on to the original description that was only based on an incomplete museum specimen instead of a plant found in nature. Their examination found that Thismia kobensis is different from a similar species called Thismia huangii. It has a short and wide ring and many short hairs on its stigma–the female part of a flower where pollen lands. Their study argues that Thismia kobensis is its own distinct species, with unique characteristics and evolutionary history.

Thismia kobensis is also the northernmost known Asian fairy lantern species, and its rediscovery could offer new insights in the biogeography of a strange and mysterious fairy lantern called Thismia americana, which was originally thought to be related to some species in Australia and New Zealand. 

[Related: Meet the world’s newest carnivorous plant.]

The study suggests that Thismia kobensis is the closest relative of Thismia americana, which has only been found near Chicago and may have evolved independently from other Australia-New Zealand species because of how its outer flowers appear. The similar inner flower construction of Thismia americana–like a lack of nectar glands–shows a closer relationship between it and Thismia kobensis

The strange distribution pattern is still puzzling botanists, but one possible reason for its distribution and close relationship might be migration through Beringia–or the Bering Strait Land Bridge that once connected eastern Asia with North America during the last Ice Age.

This rediscovery after three decades has helped scientists better understand fairy lanterns and their evolution and biogeography as a whole. The team assessed that the species is critically endangered based on IUCN red list criteria and the team recommends more logging regulations to protect the forests it lives in. 

The post Scientists just rediscovered a rare, fungi-eating ‘fairy lantern’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Even the cool forests of the Pacific Northwest face the danger of extreme heat https://www.popsci.com/environment/pacific-northwest-forest-heat/ Sun, 26 Feb 2023 00:00:00 +0000 https://www.popsci.com/?p=515165
A pine tree in Clark County, Washington damaged by the 2021 heat wave. The trees in the background are scorched Douglas-fir.
A pine tree in Clark County, Washington damaged by the 2021 heat wave. The trees in the background are scorched Douglas-fir. Karen Ripley/USFS

Drought can stress trees to death, but heat’s effects are less known. New research could hold the keys to protecting conifer forests.

The post Even the cool forests of the Pacific Northwest face the danger of extreme heat appeared first on Popular Science.

]]>
A pine tree in Clark County, Washington damaged by the 2021 heat wave. The trees in the background are scorched Douglas-fir.
A pine tree in Clark County, Washington damaged by the 2021 heat wave. The trees in the background are scorched Douglas-fir. Karen Ripley/USFS

This article was originally featured on High Country News.

In the days after a record-breaking heat wave baked the Pacific Northwest in 2021, state and federal foresters heard reports of damaged and dying trees across Oregon and Washington. Willamette Valley Christmas tree farmers had lost up to 60% of their popular noble firs, while caretakers at Portland’s Hoyt Arboretum said Douglas firs, their state tree, dropped more needles than ever seen before. Timber plantations reported massive losses among their youngest trees, with some losing nearly all of that year’s plantings. 

The damage was obvious even to those who weren’t tasked with looking for it. Drivers, homeowners and tree experts alike called or sent photos of damaged redcedars, hemlocks and spruce, particularly in coastal forests. Swaths of the landscape were so scorched it looked like a wildfire had torn through.

Some farmers and homeowners had tried to prepare, dumping water on their orchards and yards before and during the heat wave. Many lost branches, leaves and entire trees anyway. “There’s a misconception out there that a lot of people have that, if things are just watered enough, they can get through these events,” said Chris Still, an Oregon State University tree ecologist and expert in tree heat physiology. “But the heat spells we’re talking about, like the heat dome, are so intense that I don’t think that’s really a tenable assumption anymore.” Simply watering trees during extreme heat makes intuitive and practical sense, but that idea is based largely on knowledge about droughts. After all, nearly all of the research on climate-related stress in trees has focused only on the impact of insufficient water. But it turns out that trees respond quite differently to extreme heat versus prolonged drought. Still’s own research, including a new study on the heat dome, is part of a growing body of work focused on untangling the effects of both conditions. Given that extreme heat and drought are both becoming more common and intense — and won’t always coincide — foresters and tree farmers will need tools to prepare for each.

“The heat spells we’re talking about, like the heat dome, are so intense that I don’t think that’s really a tenable assumption anymore.”

 

Land photo
The U.S. Forest Service’s annual aerial survey in Oregon and Washington found that at least 229,000 acres of forest had been damaged by 2021’s heat wave. Damage was the worst on steep south-facing slopes, which get the most sun exposure.Courtesy of Daniel DePinte/U.S. Forest Service

The threat human-caused global warming poses to the Northwest’s forests was evident long before the 2021 heat dome: Oregon and Washington’s most common conifer species are all dying in alarming numbers, many because of drought. Starting in 2015, state foresters began warning that western hemlocks, a particularly drought-sensitive species common to the Coast Range and Cascades, were succumbing to pests and fungi that infested the already-stressed trees. More recently, foresters have seen widespread die-offs of western redcedar and Douglas firs. Aerial surveys in 2022 documented what foresters have dubbed “firmageddon” — the sudden death of 1.2 million acres of “true firs” (which include grand and noble firs, but not Douglas firs), mostly in Oregon.

“All of our trees are drought-stressed,” Oregon state entomologist Christine Buhl told HCN last July. “They can’t protect themselves against other agents” in their weakened state. Even common pests and native parasites that don’t normally kill trees are now proving lethal.

When the 2021 heat wave hit, foresters weren’t certain what new chaos it might bring. Drought affects tree stems and the structures that move water and nutrients around, but heat destroys needles and leaves. When those tender green structures heat up — and they often reach temperatures far higher than the air around them — they lose water fast. The tissues inside them fall apart, and they turn red or brown as their chlorophyll breaks down.

“Just like our skin, when (sun exposure) rips those cells apart and we have blisters and sunburn, it does the same exact thing to those needles and leaves,” said Danny DePinte, a forest health specialist who flies annual aerial surveys for the U.S. Forest Service in Washington and Oregon. The 2021 heat dome offered a rare glimpse of the results on a large scale: When DePinte flew over the region later that year, he saw whole landscapes of trees scorched on their south and west-facing sides, where temperatures would have been hottest. The worst damage occurred on southern slopes with prolonged exposure and in coastal forests that are adapted to far cooler temperatures. DePinte’s survey found that at least 229,000 acres of forest had been damaged by the heat wave — a figure state researchers say only begins to capture the total area damaged, which was likely much larger.

Research like Still’s, which drew in part on DePinte’s data, has made it clear that heat stress causes more immediate and acute damage than drought. Its long-term impacts are far less understood, though, because events like the 2021 heat dome are still unusual.

On his 2022 survey flights, DePinte found that the most obvious damage seems to have been temporary: Damaged areas are mostly green again with new growth. Further research, by Still’s team and others, will investigate possible lingering health effects, including whether the trees become more susceptible to pests, disease and death.

Researchers will also consider how foresters and tree farmers could respond, as extreme heat waves become more common. Adaptations might include planting certain species together to shade more vulnerable trees, determining which native trees are most tolerant to extreme heat, and planting species on farms or after wildfires that are already adapted to hotter conditions farther south.

“We need to be smart about what trees we’re planting so that we have forests in the same places,” DePinte said. “We’ve got to think hundreds of years into the future: What is this area gonna look like? And then plan accordingly.”

Update 02/28/23: This story was updated to remove a photo that showed a tree damage unrelated to the heat wave and to include a photo that shows the effects of acute hot weather injury.

The post Even the cool forests of the Pacific Northwest face the danger of extreme heat appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These urchin-eating sea stars might be helping us reduce carbon levels https://www.popsci.com/environment/sea-stars-urchin-kelp-forest/ Fri, 24 Feb 2023 14:00:00 +0000 https://www.popsci.com/?p=514800
Purple sea urchins clumped together in an urchin barren.
Sea urchins can absolutely destroy highly productive kelp forests if given the opportunity. Sonia Kowsar / Pexels

The 24-armed sunflower sea star is not a picky eater, which may makes it crucial to restoring kelp forests.

The post These urchin-eating sea stars might be helping us reduce carbon levels appeared first on Popular Science.

]]>
Purple sea urchins clumped together in an urchin barren.
Sea urchins can absolutely destroy highly productive kelp forests if given the opportunity. Sonia Kowsar / Pexels

There’s a case to be made that the world’s greatest forests are not terrestrial. That’s in large part due to kelp. Like their less watery counterparts, kelp forests play an important role in carbon cycling across the planet, converting carbon dioxide into oxygen through photosynthesis and sequestering the carbon beneath the ocean’s surface. 

Kelp forests are located in shallow coastal waters across the globe, including in the northeast and all along the Pacific coast in the United States. Despite taking up only a tiny fraction of the ocean, they’re incredibly diverse. Charles Darwin marveled at just how many species are present in kelp forests in his diary while aboard the HMS Beagle. However, they are incredibly fragile ecosystems. Once disrupted, it’s very difficult for the forests to recover.  

[Related: Sea urchin sperm is surprisingly useful to robotics experts.]

With the presence of purple sea urchins off the coasts of the western United States, the destruction of kelp forests has become much faster. But new research from Oregon State University published today in the journal Proceedings of the Royal Society B shows that the sunflower sea star, a 24-armed behemoth of a sea star living in kelp forests on the west coast may be a major asset to preserving those important ecosystems, namely by fighting off pesky sea urchins.

Sea urchins are a natural part of the ecosystem, and act as scavengers, feeding on dead kelp and other detritus that falls to the ocean floor. However, when there’s not enough food for them to go around, past research has found that they’ll begin feasting on living kelp. This disrupts the ecosystem, and if not left in check, leads to the formation of an urchin barren, with no kelp to be seen and urchins packed tightly along the ocean floor. Once a barren forms, the rebirth of a kelp forest is all but impossible. Any new kelp growth will promptly be devoured by the urchins, which are able to survive with little food and will live for at least 20 years. 

Marine biologists long ago realized that the predators of sea urchins are part of the problem. Sea otters, considered one of the keystone species of the ecosystem, have been hunted to endangered status. Other predators, like the sunflower sea star, would have to pick up some of the slack. Unfortunately, a sea star wasting disease has decimated the population in the last decade, leaving the population critically endangered. 

This study examined just how effective the sunflower sea star is as a predator of sea urchins by raising well-fed and starving sea urchins in a lab setting. After about six weeks of collecting and raising urchins, the researchers let 24 sea stars free to feed. The sea stars consumed an average of 0.68 urchins a day, and when the urchins were starving, like they are in nutrient-poor urchin barrens, sea stars ate even more. That is a major difference between the sea stars and other predators, like otters, who are picky when it comes to choosing what urchins to eat, preferring healthy urchins that are less common in a barren. 

[Related: A virgin birth in Shedd Aquarium’s shark tank is baffling biologists.]

“Eating less than one urchin per day may not sound like a lot, but we think there used to be over 5 billion sunflower sea stars,” Sarah Gravem, a research associate at Oregon State said in a release. Although there’s no consensus on just how devastating sea star wasting disease has been, most estimates place the loss at around 90 percent of the population. “We used a model to show that the pre-disease densities of sea stars on the U.S. West Coast were usually more than enough to keep sea urchin numbers down and prevent barrens,” Gravem adds.

With this knowledge in mind, future research can focus on how exactly to use sunflower sea stars to keep sea urchin populations in check—and hopefully restore kelp forests in the process.

The post These urchin-eating sea stars might be helping us reduce carbon levels appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These beetles sniff out fungus-infected trees to find their next target https://www.popsci.com/environment/beetles-fungus-conifer/ Tue, 21 Feb 2023 19:00:00 +0000 https://www.popsci.com/?p=513889
Several European spruce bark beetles on a dry piece of wood.
European spruce bark beetles burrow into the bark of trees and eventually kill them. Deposit Photos

Specialized neurons in the European bark beetle’s antennae can sense resins the fungi produce.

The post These beetles sniff out fungus-infected trees to find their next target appeared first on Popular Science.

]]>
Several European spruce bark beetles on a dry piece of wood.
European spruce bark beetles burrow into the bark of trees and eventually kill them. Deposit Photos

Conifer forests across Europe are under siege from a tiny threat with a gigantic impact. Abnormally high temperatures and summer droughts have helped populations of the Eurasian spruce bark beetles (Ips typographus) soar, eventually killing the trees. Forest management entities are rushing to fix the problem. In July 2022, the United Kingdom’s Forestry Commission began a new management program to handle outbreaks of beetles and to combat future spread, particularly in southwestern England. Germany alone has lost half a million hectares of forests since 2018, with spruce tree species being hit particularly hard by the species, also called the European bark beetle

[Related: Mother dung beetles are digging deeper nests to escape climate change.]

These small beetles burrow into the bark of Norway spruce trees, and once inside, they mate and lay their eggs. They also seem to preferentially attack the spruce trees that are already infected with a symbiotic fungus, such as Grosmannia penicillata, which is believed to weaken trees and break down their chemical defenses. This allows the beetles to successfully reproduce within the bark.

In a study published February 21 in the journal PLoS Biology, a team investigated the chemical signals that the insects use to identify host trees that are infected with the fungus. The team performed experiments in a lab on captive bark beetles and samples of Norway spruce bark. 

The experiments found that the fungus breaks down monoterpenes–chemicals present in tree bark resin–into new compounds, including camphor and thujanol. They also found that the fungus-produced compounds dominated the chemical mixture emitted by the bark samples after 12 days of infection. 

Insects photo
Pupae of the European spruce bark beetle in the bark of a Norway spruce tree recently killed by bark beetle attack. CREDIT: Dineshkumar Kandasamy.

Additionally, single cell recordings of sensory neurons in the beetles’ antennae revealed that the bugs can detect camphor and thujanol. Behavioral experiments found that the bark beetles were attracted to the bark that had these fungus-produced compounds. The compounds may allow bark beetles to assess the presence of the fungus and find trees that are suitable to eat and breed in. 

[Related: The government is raising an army of parasitic wasps to fight invasive beetles.]

According to the study authors, understanding the role that these chemical compounds play in bark beetle attacks could help create better pest-management strategies and protect European conifers from future epidemic outbreaks.

“The bark beetles currently killing millions of spruce trees every year in Europe are supported in their attacks by fungal associates,” said study co-author Jonathan Gershenzon, a biochemist from the Max Planck Institute for Chemical Ecology, Germany, in a statement. “We discovered that these fungi convert volatile compounds from spruce resin to products, which may serve as cues for bark beetles to find them.”

The post These beetles sniff out fungus-infected trees to find their next target appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Slow-moving shoreline creatures are sitting ducks for climate change https://www.popsci.com/environment/barnacles-crabs-climate-change/ Mon, 20 Feb 2023 02:00:00 +0000 https://www.popsci.com/?p=513480
barnacles on the beach
Less mobile animals such as barnacles and limpets just have to cope as best they can. Deposit Photos

Lots of species are being forced to move to escape the heat. Some just can’t move very far.

The post Slow-moving shoreline creatures are sitting ducks for climate change appeared first on Popular Science.

]]>
barnacles on the beach
Less mobile animals such as barnacles and limpets just have to cope as best they can. Deposit Photos

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

As the world warms, animals living near the coast are being battered by stronger storms, rising seas, and extreme temperatures. While fish, birds, and other species might be able to escape—often toward the poles—many marine creatures can barely move, let alone speed out of the way.

Scientists have long known that on hot days more mobile shoreline creatures like crabs take steps to control their body temperature by scuttling into cool crevices. Less mobile animals such as barnacles and limpets, meanwhile, just have to cope as best they can. Yet with extreme heatwaves becoming more common, Lily McIntire, an ecologist at San Diego State University in California, was curious to know where intertidal creatures spend hot days and what happens to their internal temperatures.

For the past few years, McIntire has been making epoxy resin models of various intertidal animals—from fast-moving crabs to slower snails and limpets to immobile animals like barnacles—and dotting them around the shoreline in Northern California. Affixed with temperature loggers, the resin replicas are designed to heat up and cool down at the same rate as the real creatures. By then watching where real animals spend their time, and using nearby models to determine their internal body temperatures, McIntire got a glimpse into how the beach’s tiny inhabitants handle the heat.

The preliminary data, which was presented at a recent conference, shows that on hot days the faster creatures manage to keep their body temperatures stable by hiding out in cooler areas, while less mobile animals bake in the sun. On cool, cloudy days, McIntire’s experiments show that slow creatures in the intertidal zone sit at around 15 °C. But in hot, sunny weather, she found they can heat up to around 30 °C.

McIntire says it’s not entirely clear how animals deal with extremely hot days, like those during the heat dome that afflicted the Pacific Northwest in 2021 with temperatures above 40 °C, as none occurred during her experiments.

However, she says in extreme heat it is possible that faster-moving animals like crabs will fare worse than sessile ones. The reason, she explains, is that while mobile creatures can head for a shady spot, sessile species have likely evolved better physiological ways to deal with temperature extremes. For instance, many snails and mussels have heat shock proteins that help them cope with heat stress by protecting other important proteins. But these adaptations to high temperatures have limits, McIntire says.

Michael Burrows, a marine ecologist at the Scottish Association for Marine Science who was not involved in McIntire’s project, expects that with ongoing warming mobile shoreline creatures will not be able to spend as much time hunting and foraging, while slower creatures like barnacles will disappear from warmer parts of the seashore. The overall result, he says, could be akin to cutting off the lower links of the food chain.

The post Slow-moving shoreline creatures are sitting ducks for climate change appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Human interactions can drastically change wolf pack dynamics https://www.popsci.com/environment/wolf-pack-break-up/ Sun, 19 Feb 2023 00:00:00 +0000 https://www.popsci.com/?p=512724
A wolf stands in the road at Yellowstone National Park. Data collected by researchers shows just over a third of the collared wolves living primarily in five protected national parks died of human-causes.
A wolf stands in the road at Yellowstone National Park. Data collected by researchers shows just over a third of the collared wolves living primarily in five protected national parks died of human-causes. Jacob W. Frank/National Park Service

A new study explores how packs change when activities like hunting and car accidents kill wolves.

The post Human interactions can drastically change wolf pack dynamics appeared first on Popular Science.

]]>
A wolf stands in the road at Yellowstone National Park. Data collected by researchers shows just over a third of the collared wolves living primarily in five protected national parks died of human-causes.
A wolf stands in the road at Yellowstone National Park. Data collected by researchers shows just over a third of the collared wolves living primarily in five protected national parks died of human-causes. Jacob W. Frank/National Park Service

This article was originally featured on High Country News.

Packs are to wolves as families are to humans: They’re the species’ most essential social structure. The dynamics of a wolf pack — who its leaders are, how the members raise pups, how they hunt their prey, and how they respond to threats — determine the group’s survival.

But so far, the majority of wolf research has focused on the species’ population as a whole, rather than individual packs. Wolf populations tend to stay pretty steady despite human-caused mortality. But we also know that some wolves avoid busy roads, that heavily hunted wolves have high stress hormones, and that human development fractures wolf habitat. This gap in understanding led a group of National Park Service employees and biologists to ask: How does human activity alter individual wolf packs?

That question inspired a new study, recently published in the journal Frontiers in Ecology and EnvironmentThe research analyzed how human-caused deaths — from hunting and poaching to car accidents and research captures — have affected nearly 193 wolf packs in five national parks and preserves. The researchers used data collected in those parks between the late 1980s and the present. Just over a third of the collared wolves living primarily in those protected national parks died of human-causes, and those deaths had negative consequences for some of the packs.

Packs affected by human-caused wolf deaths were less likely to reproduce, while losing a pack leader decreased the chances that the pack stayed together or had pups the next year. The researchers also found that pack size matters: Packs that were smaller to begin with were more likely to dissolve, while bigger packs proved more resilient. “If human families have to deal with the death of family members — like two in a row, or the leader of the family — that would be much more disruptive and harder to get through,” said lead author Kira Cassidy, a research associate with the National Park Service’s Yellowstone Wolf Project. Larger packs have more members waiting in the wings to take over any responsibilities and duties that a sudden void in the pack may leave unfilled.

Packs affected by human-caused wolf deaths were less likely to reproduce, while losing a pack leader decreased the chances that the pack stayed together or had pups the next year. 

Cassidy said she recently observed this in Yellowstone. In late 2021, before hunting season, the park’s Junction Butte Pack had 28 members, making it a relatively large group. Hunters outside the park legally killed eight wolves, all of them young. The group rebounded quickly; In the spring of 2022, the pack had four litters of pups, and now has 25 members. A smaller pack may have broken up and dispersed, or not reproduced to that extent. “Socially, they’re fragile,” said co-author Doug Smith, the recently retired Yellowstone senior wolf biologist.

The study shows the importance of tracking wolf packs, rather than just population numbers, said Mark Hebblewhite, a University of Montana professor not involved in the research who studies wolves and ungulates. This new understanding shows wildlife managers that human boundaries can’t always protect wildlife. “This paper recognizes that national park animals like wolves and bison are vulnerable to harvest when they leave the park,” Hebblewhite said. “They spent all summer seeing hundreds of cars and thousands of people, and those people don’t do anything bad to them. And then they leave the park, walk right in front of an outfitter camp, and get hammered by somebody shooting them.”

The authors hope the study spurs more collaboration between national parks and neighboring states to limit humans’ effect on wolves living near the edge of protected areas. “This paper may be useful not only to point out how important packs are, (but also) how important it is for us to understand how we are responsible for impacting another species,” Cassidy said. “I’m pretty proud that this study gives people the information to say, ‘This is our impact.’”

The post Human interactions can drastically change wolf pack dynamics appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A group of humpback whales is choosing violence https://www.popsci.com/environment/a-group-of-humpback-whales-is-choosing-violence/ Fri, 17 Feb 2023 13:00:00 +0000 https://www.popsci.com/?p=513196
An adult humpback whale surfaces above the water in eastern Australia.
A surface-active adult humpback whale migrating along the eastern coastline of Australia. Though migrating, these animals are still undertaking breeding behaviors such as joining with, and competing over, available females. The Cetacean Ecology Group, University of Queensland.

Male humpback whales off eastern Australia are singing less and fighting more.

The post A group of humpback whales is choosing violence appeared first on Popular Science.

]]>
An adult humpback whale surfaces above the water in eastern Australia.
A surface-active adult humpback whale migrating along the eastern coastline of Australia. Though migrating, these animals are still undertaking breeding behaviors such as joining with, and competing over, available females. The Cetacean Ecology Group, University of Queensland.

The humpback whales (Megaptera novaeangliae) along Australia’s eastern coast might be giving up singing their signature songs to find a mate. As the competition for females has increased, a new study theorizes that instead of crooning their love songs, the male whales are switching to fighting each other and are possibly staying quiet for their own survival. 

Humpback whale songs have been studied for more than half a century, following the development of better underwater microphones in the 1970s that allowed scientists to record them. Only male humpbacks are known to make these elaborate sounds. It is believed that this allows them to attract mates and assert their dominance among other whales. 

[Related: Boat noise is driving humpback whale moms into deep, dangerous water.]

The population of whales surveyed for the new study, published February 16 in the journal Communications Biology, is a conservation success story. Only about 200 whales were in the area in the 1960s and they have since come back from the brink of extinction. They have been able to survive and thrive primarily due to commercial whaling largely stopping in 1986

The team used data from 1997 to 2015, when the humpback whale population in eastern Australia exploded from roughly 3,700 whales to 27,000. As the population of whales increased, competition for mates also grew.

“In 1997, a singing male whale was almost twice as likely to be seen trying to breed with a female when compared to a non-singing male. But by 2015 it had flipped, with non-singing males almost five times more likely to be recorded trying to breed than singing males,” said study co-author and marine biologist Rebecca Dunlop from The University of Queensland’s School of Biological Sciences, in a statement. “It’s quite a big change in behavior so humans aren’t the only ones subject to big social changes when it comes to mating rituals.”

According to Dunlop, if the competition for a mate is fierce, the last thing a male would want to do is let another male know that a female is in the area by singing. It could attract unwanted competition and be risky. 

“With humpbacks, physical aggression tends to express itself as ramming, charging, and trying to head slap each other. This runs the risk of physical injury, so males must weigh up the costs and benefits of each tactic,” said Dunlop

In an interview with the Associated Press, Simon Ingram, a marine biologist from University of Plymouth said who was not involved with this study said, “Such a big increase in animals over the time they were studying gave them a unique opportunity to get insights about changes in behavior. Clearly singing became incredibly valuable when their numbers were very low.”

[Related: A rare humpback whale ‘megapod’ was spotted snacking off the Australian coast.]

The humpbacks in eastern Australia have rebounded close to pre-whaling levels and have even been taken off of the threatened species list. The team can continue to track how the whales’ social behavior changes with their increased numbers.

“Singing was the dominant mating tactic in 1997, but within the space of seven years this has turned around,” said Dunlop. “It will be fascinating to see how whale mating behavior continues to be shaped in the future.”

The post A group of humpback whales is choosing violence appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why Danish citizen scientists were on a quest to find the oldest European hedgehog https://www.popsci.com/environment/oldest-european-hedgehog/ Wed, 15 Feb 2023 20:30:00 +0000 https://www.popsci.com/?p=512618
A European hedgehog on a road with a yellow flower.
A European hedgehog crossing a road. Deposit Photos

The beloved mammal is facing population decline in some habitats.

The post Why Danish citizen scientists were on a quest to find the oldest European hedgehog appeared first on Popular Science.

]]>
A European hedgehog on a road with a yellow flower.
A European hedgehog crossing a road. Deposit Photos

A citizen science project in Denmark helped researchers find the world’s oldest (or at least scientifically-confirmed oldest) European hedgehog (Erinaceus europaeus). At 16 years-old, Thorvald the hedgehog lived seven years longer than the previous record holder. On average, the six to 11 inch long animals typically found wooded areas, gardens, and parks and lives around two years. 

The study on the life expectancy of European hedgehogs was published February 14 in the journal Animals

While the European hedgehog is a beloved mammal, their populations have declined up to 30 percent in rural populations in the United Kingdom alone. Multiple projects have been launched by conservationists and researchers to monitor populations and inform initiatives that protect the animals in the wild. Citizen science is proving to be an ally in understanding how long these mammals live.

[Related: Citizen science is another great form of nature therapy.]

In 2016, researchers from a citizen science conservation initiative called the The Danish Hedgehog Project, asked people in Denmark to collect data on any dead hedgehogs they encountered in an effort to figure out how long the mammals typically lived. Volunteers found 697 dead hedgehogs from all over Denmark.

The researchers determined the age of the hedgehogs by counting growth lines in thin sections of the hedgehogs’ jawbones, like counting growth rings in trees. Their jaw bones show growth lines because calcium metabolism slows down when they hibernate over winter. Bone growth will reduce or stop completely, resulting in one line that represents one hibernation. 

The second and third place winners of oldest hedgehog were 13 and 11 years-old. The average age was only about two years and roughly 30 percent died before reaching one year old. 

Most of the hedgehogs were killed while crossing roads. About 22 percent of the animals died at a hedgehog rehabilitation center following injuries from incidents like dog attacks, and 22 percent died of natural causes in the wild. 

The male hedgehogs generally lived 24 percent longer than females (2.1 vs 1.6 years), but the males were also more likely to be killed in traffic. The team speculates that this is possibly because male hedgehogs come into contact with roads more frequently due to their longer ranges.

Road deaths also peaked during the month of July for both males and females. July is the height of mating season for hedgehogs in Denmark, and the increase is likely due to the hedgehogs walking longer distances and across more roads to search for mates. 

[Related: Birders behold: Cornell’s Merlin app is now a one-stop shop for bird identification.]

“Although we saw a high proportion of individuals dying at the age of one year, our data also showed that if the individuals survived this life stage, they could potentially live to become 16 years old and produce offspring for several years,” said Sophie Lund Rasmussen, a biologist from Oxford University’s Wildlife Conservation Research Unit (WildCRU) who leads The Danish Hedgehog Project, in a statement. “This may be because individual hedgehogs gradually gain more experience as they grow older. If they manage to survive to reach the age of two years or more, they would have likely learned to avoid dangers such as cars and predators.”

Rasmussen, also called Dr. Hedgehog on social media, also added that being a male hedgehog is “simply easier”—the animals are not territorial, they rarely fight. Not to mention that female hedgehogs also take on raising offspring alone. 

To investigate if inbreeding influenced their lifespans, the researchers also took tissue samples. Previous studies have found a low genetic diversity in the Danish hedgehog population, an indicator of high degrees of inbreeding which can reduce the fitness of a population. Inbreeding allows hereditary, and potentially lethal, health conditions like lower offspring birth rate and reduced milk production, to be passed down to offspring. 

Much to the team’s surprise, the tests showed that inbreeding did not seem to reduce the expected lifespan of the hedgehogs.

“Sadly, many species of wildlife are in decline, which often results in increased inbreeding, as the decline limits the selection of suitable mates. This study is one of the first thorough investigations of the effect of inbreeding on longevity,” said Rasmussen. “Our research indicates that if the hedgehogs manage to survive into adulthood, despite their high degree of inbreeding, which may cause several potentially lethal, hereditary conditions, the inbreeding does not reduce their longevity. That is a rather groundbreaking discovery, and very positive news from a conservation perspective.”

The results from this study will aim to improve conservation management for a “beloved and declining species.”

The post Why Danish citizen scientists were on a quest to find the oldest European hedgehog appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Gender reveal parties are turning nature pink and blue https://www.popsci.com/environment/gender-reveal-party-accidents/ Wed, 15 Feb 2023 11:00:00 +0000 https://www.popsci.com/?p=512319
Pink pigeon in New York City wildlife rescue center that was dyed for gender reveal party
People guessed that an artificially dyed pigeon, rescued by the Wild Bird Fund in New York City, was used as a prop for a gender reveal party. The patient, named Flamingo by the staff, did not survive. Phyllis Tseng/Wild Bird Fund

With a string of recent fires and wildlife incidents, the trend has gotten too extreme.

The post Gender reveal parties are turning nature pink and blue appeared first on Popular Science.

]]>
Pink pigeon in New York City wildlife rescue center that was dyed for gender reveal party
People guessed that an artificially dyed pigeon, rescued by the Wild Bird Fund in New York City, was used as a prop for a gender reveal party. The patient, named Flamingo by the staff, did not survive. Phyllis Tseng/Wild Bird Fund

In living rooms, backyards, and public parks throughout the country, baby showers are being replaced by something a bit more dramatic. Some of today’s expectant parents share their joy by “revealing” their child’s sex in parties that feature balloons, cake, and confetti in pink or blue (or occasionally purple, if the parents want to signal that they will not know their child’s chosen gender for many years to come). But the biggest ones, fueled by social media trends, go even further, involving extravagant stunts. And these spectacles can wreak havoc on the environment. 

A pink pigeon found in New York City, who some speculate was brightly colored for a gender reveal party, died from inhaling the dye’s toxins earlier this month. A couple who used a pyrotechnic device to reveal their baby’s gender started the El Dorado fire in California in 2020, which killed a firefighter and destroyed five homes and 15 buildings. An off-duty border patrol agent lit an Arizona forest on fire with a blue-colored explosive. And in one gender reveal party in Brazil, a couple dyed an entire river blue.

[Related:

[Related: How to build and extinguish a campfire without sparking a catastrophe]

While most gender reveal parties stick to colored cupcakes or other tame features, social media could be driving a few expectant parents to go bigger. Popular videos and posts can encourage people to mimic what others are doing, such as learning a TikTok dance, says Laura Tropp, a professor of communication arts at Marymount Manhattan College who specializes in representations of pregnancy, motherhood, and families in popular culture. Or they can take a trend to dangerous heights, which seems to be the case with the pigeon, river, and fires. Insurance companies are even posting liability advice for when reveals go wrong.

“You’re seeing this pressure on a lot of people to have the next-level gender reveal party,” Tropp says. “They involve color; they involve objects. And I think people love to watch all these extreme parties happening because they’re exciting.” 

Not only are gender reveals visual phenomena—they are also able to make what used to be a very private human experience something more social. “Pregnancy is long, most of it is just happening inside a woman’s body,” Tropp explains. “So it’s the ability to kind of take an aspect of pregnancy, move it outside a woman’s body, and then make it exciting. And then maybe make it extreme to get the social media views that people want.”

[Related: TikTokers are taking a diabetes drug to lose weight. Now it’s in short supply.]

Tropp says it’s all part of the commoditization of pregnancy and parenthood. The baby product industry is estimated to reach $352 billion by 2023, and offers everything from “it’s a boy!” hand sanitizer to edible glitter bombs. “There’s this pressure on parents to be a part of all these rituals that were never associated with pregnancy or parenting,” she notes. “Gender reveal parties are a part of this moment where you could publicly express an aspect of your pregnancy really early on. So I think we’re seeing this kind of shift from parenting starting at the moment of birth to parenting starting much, much earlier.”

But gender reveal parties are just one of many human rituals that can be harmful to the environment, according to Bron Taylor, a professor of religion, nature and ethics at the University of Florida, who has written about environmental ethics. “Fireworks are an obvious example,” he writes in an email to PopSci. “They pollute the air, soil, and water, and of course, their production, distribution, and use, contributes to anthropogenic climate disruption. But these practices, whether for nationalistic, calendrical, or religious rituals, are now so well-established, that many consider questioning them unthinkable … In this age of profound environmental crises, we should be rethinking everything, including every sort of ceremony and ritualized practice.” 

For those who still want to throw a gender reveal party, a good starting point may be to “eschew things that burn, explode, or otherwise risk hurting people or ecosystems,” Taylor says. Share your excitement in a responsible way—or you could just stick to cupcakes and piñatas.

The post Gender reveal parties are turning nature pink and blue appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The endangered Eurasian lynx might never recover fully in France https://www.popsci.com/environment/frances-eurasian-lynx/ Mon, 13 Feb 2023 19:30:00 +0000 https://www.popsci.com/?p=511799
A Eurasian lynch perches in a fallen tree in a forest.
A Eurasian lynch perches in a fallen tree in a forest. Deposit Photos

The elusive wildcats face poaching, car accidents, and a dwindling gene pool.

The post The endangered Eurasian lynx might never recover fully in France appeared first on Popular Science.

]]>
A Eurasian lynch perches in a fallen tree in a forest.
A Eurasian lynch perches in a fallen tree in a forest. Deposit Photos

Conservationists in Europe are warning that a population of Eurasian lynx will disappear from France if action is not taken. These elusive wildcats live in the Jura Mountains, a mountain range in eastern France on the border with Switzerland.

After disappearing entirely from France in the 18th century, the wildcats were reintroduced to Switzerland during the 1970s and lynxes moved across the border into France by the end of the decade. A genetic study published February 13 in the journal Frontiers in Conservation Science finds that this population needs help and could go extinct within three decades.

[Related: Living with a lynx—for science.]

“Given the rapid loss of genetic diversity, we estimate that this population will go extinct in less than 30 years,” said co-author Nathan Huvier from the Centre Athenas, in a statement. “This population urgently needs new genetic material to become sustainable.”

Not much is known about this population of lynxes. Scientists estimate that it contains a maximum of 150 adults and is poorly connected to the larger and healthier populations that live in Germany and Switzerland. The population is also not growing to a sustainable size. 

The team believes that its population growth has been suppressed by poaching, automobile accidents, and inbreeding depression. Inbreeding depression occurs when insufficient genetic diversity in a population leads to problems with reproduction and survival.

“As there is a lack of genetic monitoring of the lynx in France and we consider that crucial for species conservation, we took the lead and did this work,” said Huvier.

From 2008 to 2020, the team collected genetic samples to try and determine the genetic health of the population. They took samples from lynxes that were dead,  injured, or orphaned to keep from stressing the healthy animals in an already precarious population. 

“For us, this method is more ethical as there is no capture and thus stress induced for DNA sampling only,” explained Huvier.

They compared the genetic samples to references that came from the parent population of lynxes from the Carpathian Mountains in Central and Eastern Europe. The team determined that while the size of the French population of lynxes is believed to be between 120 to 150 individuals, the population of healthy breeding wildcats is only 38 wildcats. However, the team cautions that 38 is likely an overestimate, so the number may be even lower. 

[Related: The curious case of an endangered wildcat and a disappearing fruit tree.]

What they found to be more alarming is that the inbreeding coefficient–a measure of how likely it is that two mating individuals from the same population are closely related– is very high. They found a 41 percent chance that two mates were closely related and that new genetic material is urgently needed to prevent population collapse.

To help save these lynxes, the team suggests using road signs that raise awareness of the presence of lynxes to encourage drivers to remain cautious and more strict enforcement of poaching laws. Replacement of poached lynxes with animals from genetically healthier populations and exchanging orphaned cubs between rescue centers would also help rescue this population from genetic collapse.

“We want this work to support action for lynx conservation,” said Huvier. “Reintroduction, replacement of poached lynxes, and exchange of orphan lynxes between care centers are the best short-term solution for this population to remain alive, and it will give it a chance to develop and connect with other populations in Europe.”

The post The endangered Eurasian lynx might never recover fully in France appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Greenland’s isolated ‘Last Ice Area’ is vanishing https://www.popsci.com/environment/arctic-lakes-disappear/ Mon, 13 Feb 2023 17:48:25 +0000 https://www.popsci.com/?p=511831
An unnamed iceberg is frozen in place by sea ice in North Star Bay, Greenland.
An unnamed iceberg is frozen in place by sea ice in North Star Bay, Greenland. NASA

Scientists race to study Arctic lakes before they are lost forever.

The post Greenland’s isolated ‘Last Ice Area’ is vanishing appeared first on Popular Science.

]]>
An unnamed iceberg is frozen in place by sea ice in North Star Bay, Greenland.
An unnamed iceberg is frozen in place by sea ice in North Star Bay, Greenland. NASA

This story was originally published by Grist. You can subscribe to its weekly newsletter here.

Last July, glaciologist Derek Mueller made his fourteenth annual quest to gather samples from Milne Fjord, a research station on the coastal margin of the “Last Ice Area”— a 400,000-square-mile region north of Greenland and the Canadian Arctic Archipelago. The facility sits about 500 miles from the North Pole, nestled between tremendous ice flows. The landscape is rich with harsh beauty: Melt ponds, underlined by glistening ice, rest between white hillocks. Contrasted against the vivid white ice and dark, churning sea, each pool glows with its own crystal-blue light. 

Mueller’s work had focused on Milne Fjord’s only known epishelf lake — a microbially rich ecosystem that arises when an ice shelf creates a dam, allowing a thin layer of freshwater to float above seawater connected to the open ocean. As with the rest of the Arctic, they are threatened by climate change. But there was reason to hope for Milne Fjord: For years, scientists believed this area, home to the oldest and thickest ice in the northern hemisphere, would survive the worst effects of global warming. 

But as Mueller and his team approached their old testing grounds, they could tell something was amiss. Where there had once been fingers of turquoise, there was now only the vivid white of ice and the ghostly remnants of melt water. 

Milne Fjord’s epishelf lake had all but disappeared.

“It’s a mixed bag of emotions,” said Mueller. “There’s the scientific curiosity of measuring a changing system, but at the same time it’s a feeling of great loss.”

The Arctic is no stranger to depletion, warming at a rate nearly four times faster than the rest of the planet. It’s widely known that as glaciers calve and collapse, ice-dependent habitats and the wildlife that depend on them will continue to disappear. But while famished polar bears, retreating ice, and ancient viruses tend to drive headlines about Arctic thaw, the slow but steady thaw of the Last Ice Area places scientists on a new level of alert. 

Not only does its disappearance sound an unexpected warning bell for climate change and the carbon cycle, it also means there may be little time left to learn from the Arctic’s unique ecosystems — before they disappear.


The Last Ice Area was once so frozen and hostile it stymied those who sought to traverse it. In the summer 1875, British explorer Albert Hastings Markham wrote of Milne Fjord:

A charming day, although the temperature persists in remaining minus 30 degrees [C]. Glare from the sun has been very oppressive; the snow in places resembles coarse sand, and appears more crystallized than usual. A few of the party, including Parr and myself, suffering from snow-blindness. Distance marched ten miles…a great expanse of hummocks varying in height from twenty feet to small round nobly pieces over which we stagger and fall…There is no chance at present to get out, as the ice pack is too thick. 

The ice shelf was so rugged, in fact, that the team was forced to turn back. But, nearly 148 years later, the Arctic bears little resemblance to that description. According to NASA, the extent of summer sea ice — the area in which satellite sensors show to be at least 15 percent covered in frozen water — is shrinking by more than 12 percent per decade.

Satellite observations have shown that between 1997 and 2017 alone, the region lost around 31 trillion tons of ice. Even if we do manage to limit global warming to the goal of 1.5 degrees C (2.7 degrees F), a recent study predicted the Earth would still lose a quarter of its glacier mass

There are myriad reasons why the Arctic is warming so quickly (a phenomenon scientists often refer to as Arctic amplification), but a leading culprit is sea ice melt. The Arctic’s sea ice, typically 3 to 15 feet thick, freezes during winter and melts each summer. The white, snow-covered sheets reflect roughly 85 percent of incoming solar radiation back out to space. The open ocean, on which the ice floats, is so dark that it absorbs 90 percent of it. 

As the region’s sea ice melts, solar absorption rates create a positive feedback loop: The warmer the ocean, the less ice. The less ice, the more heat is absorbed. The more heat, the warmer the ocean. 

Even accounting for this cycle, most climate models predicted the Last Ice Area would remain relatively frozen, acting as a seasonal stronghold for ice-dependent animals. In the summer ice flows from continental ice shelves near Siberia tend to pile up in the area, forming frozen ridges more than 30 feet high.  

But it seems Milne Fjord’s thick ice isn’t enough to shield it from the current pace of warming. “The glaciers melting are bringing freshwater down, adding heat into the fjord and the epishelf lake,” Mueller said. “Having weaker ice in the fjord would mean that the glacier could advance faster, thin out faster, and break up faster. ” 

 While it’s too early to determine the exact cause behind the disappearance of Milne Fjord’s epishelf lake, Mueller thinks that drainage may be attributed to the Milne Ice Shelf breaking apart two years ago. In 2002, scientists observed a similar phenomenon when the Ward Hunt ice shelf broke off, causing the Disraeli Djord Epishelf Lake to drain away.

“We’re really seeing the last death row of these epishelf lakes,” he said. “There aren’t any others in Canada as far as we know.”

It’s not just epishelf lakes that are disappearing from the Far North. Researchers sometimes refer to Arctic lakes as “sentinels,” due to their swift responses to shifting conditions. “Lakes are more sensitive than other ecosystems to climate change,” said environmental microbiologist Mary Thaler, who felt compelled to study the Arctic’s ecosystems because of the dwindling time they might remain in existence. “They’re like the warning bell going off, the first ones to take the hit, and we see them being utterly transformed.”

According to a 2022 study, lakes constitute almost 40 percent of the Arctic lowlands, the largest surface water fraction of any terrestrial biome. In addition to providing crucial habitat for high Arctic wildlife, marine species, and migratory birds, they are a critical source of freshwater for Indigenous communities such as the Komi and Nenets

The rapid disappearance of these essential bodies of water has surprised some researchers. Scientists once predicted that climate change would initially expand them across the tundra. Although they knew drainage might eventually occur, it wasn’t expected for a few hundred more years. But it seems that the thawing of underlying permafrost, the frozen mixture of soil and organic matter that blankets the far north, is counteracting the expansion effect. 

Permafrost is an important form of long-term storage for carbon — holding nearly twice as much as currently found in the atmosphere. But that ability depends on permafrost remaining frozen. As the ground thaws, plants or animals buried within can resume decomposing, releasing greenhouse gases into the atmosphere. Permafrost, particularly the layers under Arctic lakes, can also contain a particularly high number of frozen microbes, which help facilitate the release of gases. While a few scientists have expressed concerns over the re-release of prehistoric diseases and pathogens, most researchers say the real worry has to do with climate feedback loops.

“The important part is that it is a very large reservoir of carbon that we don’t want moved into the atmosphere,” said Arctic ecologist Elizabeth Webb. 

Webb’s research has largely focused on why Arctic lakes are disappearing far more quickly than expected. She found that the decreases in surface water over the last 20 years have been correlated with two distinct climate variables. The first, not surprisingly, is increasing temperatures. The second and far more puzzling factor to researchers is the climate-driven increase in rainfall. 

It may seem counterintuitive that more rain could lead to fewer lakes. “We were like, why in what world does this make sense?” Webb said. But because autumnal rain is warmer than the frozen ground, it brings a whole lot of heat to the underlying permafrost. That warmth can open up underground channels that drain surface water. 

“This drying of lakes was expected,” says Webb, “but it’s happening way earlier than the models projected.” 

But time is short to figure out what it all means for the Arctic and beyond. Researchers in the area lost two years of fieldwork due to the COVID-19 pandemic, and many projects were further delayed by the proposal backlog for expedition funding. Even the unpredictable Arctic weather can turn against scientists, with certain expeditions requiring clear skies in order for helicopters to take scientists to key sample sites. Mueller remembers an expedition where fog and rain delayed his team’s arrival by 10 days. “By the time we actually got there, we basically got the bare minimum of what we needed done,” he said.


For those lucky enough to have procured samples from the disappearing ecosystems of the Arctic, those materials have taken on a new significance. 

In Quebec City, Thaler analyzes small amounts of freshwater drawn during a 2016 excursion to Milne Fjord’s epishelf lake. The lake is no more, but the samples teem with life. Thaler goes through each one, trapping bacteria, viruses, and other microbial DNA in filters.

tiny figures in red and black suits stand on ice amongst finger-like melt ponds
A team of scientists gather samples from Arctic sea ice and melt ponds in 2011.
NASA / Kathryn Hansen

“We had looked at other parts of the Milne Epishelf Lake’s ecosystem but never the viruses,” she said. “Because it’s so dark, cold, and poor in nutrients, most of what’s in the lake is tiny microscopic life — so viruses can make huge differences in which species are going to thrive. 

Thaler and her team found that in terms of viruses, the lake had been 25 percent more abundant and diverse compared to the marine layer beneath. 

“Everything that is going on in terms of photosynthesis, respiration, and releasing carbon is actually being driven by this microscopic community,” she said. “We wanted to know, are there species or genetic codes or different traits that are only found in this one lake? Now, anything that was unique or special about it has been lost forever.”

Much like the journal entries from 1875, the lake’s samples offer a glimpse into the ecosystems of the past – a historic snapshot of a bygone world. For his part, Mueller thinks back on his work at Milne Fjord with a feeling of apprehension and urgency — but also hope. 

“It’s an environment that is stunningly beautiful and rather unique. It would be nice to fully characterize it and understand it before it’s lost forever,” he said. “There’s no local solution to any of this – it’s a global problem, so we need global changes to address this.”

This article originally appeared in Grist at https://grist.org/science/last-ice-area-disappearing-arctic-lake-permafrost-thaw-science/. Grist is a nonprofit, independent media organization dedicated to telling stories of climate solutions and a just future. Learn more at Grist.org

The post Greenland’s isolated ‘Last Ice Area’ is vanishing appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How thinning could help prevent wildfires https://www.popsci.com/environment/wildfire-prevention-thinning/ Sun, 12 Feb 2023 00:00:00 +0000 https://www.popsci.com/?p=511364
Reducing 'fuel' in forests may protect them from destruction — but may not help local towns.
Reducing 'fuel' in forests may protect them from destruction — but may not help local towns. DepositPhotos

The rundown on what scientists find actually works to protect forests and homes.

The post How thinning could help prevent wildfires appeared first on Popular Science.

]]>
Reducing 'fuel' in forests may protect them from destruction — but may not help local towns.
Reducing 'fuel' in forests may protect them from destruction — but may not help local towns. DepositPhotos

This article was originally featured on High Country News.

Western forests are a modern artifact. Gaze upward, and you’ll see needles overlapping needles, blocking out the sky. Peer around, and you won’t see far through the congestion of shrubs, young trees and vines. Look down, and you will see duff, debris and non-native plants. Primeval forests, by contrast, were a patchwork of varying densities, often sparsely populated by leviathan trees lording over a healthy, diverse and fruitful understory.

The strange new state of modern forests makes them more flammable. 

Severe wildfire —which kills most of the trees in its path — has increased eightfold in 30 years. The burned forest is often replaced by shrubland, extinguishing a once-magnificent ecosystem.

Decades of scientific research and field practice have landed on a powerful tool for preventing severe wildfire — and helping forests become more resilient to climate change: fuels reduction. This term includes both thinning, the mechanical removal of shrubs and small trees, and prescribed burning, the purposeful introduction of fire under favorable conditions.

Wildfire ecologists almost universally support fuels reduction — especially in forests that used to flourish under frequent ground fires, such as the ponderosa pine forests of the Southwest. There is no sizeable cohort of scientific dissent, but forest managers still struggle to put it into practice. Thinning is the target of prolific misinformation, while nearby residents may see prescribed burning as a nuisance or threat, sometimes with good reason. 

Here’s a brief rundown on fuels reduction, wildfires, and what most scientists think we should do to protect forests and homes:

Thinning is not logging. To its opponents, thinning is a form of “silviculture by stealth,” as wildfire historian Stephen Pyne put it. Pyne, however, says thinning is more like “woody weeding.” Logging, he explained, harvests large, mature trees over large areas, while thinning mostly removes small trees. Logging makes money; thinning almost always costs money. “When you hear something like ‘fuels reduction logging,’ that’s a classic conflation,” said Gavin Jones, research ecologist with the U.S. Forest Service and lead author of a paper on wildfire misinformation published last September in Frontiers in Ecology and the Environment.

Thinning does not make wildfires more destructive. One line of misinformation claims thinning creates “hotter, drier, and windier conditions that favor the spread of flames.” “Yes, but they favor the spread of flames on the surface,” said Pyne, “and that’s where you want it.”

Thinning followed by frequent ground fire is generally beneficial; it promotes nutrient cycling and maintains an open forest structure that won’t get dense enough to invite a crown fire.

Thinning is not a climate change risk. Detractors say thinning contributes to climate change by depleting carbon reserves in the form of forests. That’s not entirely inaccurate, but it overlooks an important point: Forests in need of thinning are already “pretty darn at risk of total loss from wildfire and drought,” said Jones. Thinning sacrifices a portion of the carbon reserves in order to save the ecosystem and the remaining carbon reserves.

Thinning should be followed by prescribed fire. “If you don’t follow it up with the right fire, then it’s worthless, and in many cases may have made it worse,” said Pyne. Thinning and prescribed burning are the one-two punch that will knock out many severe wildfires. Prescribed fires do have drawbacks: They are complicated to plan and execute, they dump unwanted smoke on communities, they’re subject to litigation, and in rare instances they can spark destructive burns. Nevertheless, they are sorely needed, and without them, thinning rarely succeeds. Updated policies, funding and new programs could reduce the risks and increase the use.

The vast majority of scientists approve of thinning, though a quick Google search may seem to show otherwise. Chad Hanson, director of the John Muir Project, is thinning’s most vocal opponent. His opinions have appeared in dozens of news clips, reports, letters to Congress, lawsuits, op-eds, webinars, books and interviews. In 2019, Jones co-authored a paper criticizing Hanson’s methods and conflicts of interest in the journal Frontiers in Ecology and the Environment.

Jones argued Hanson and his coauthors were guilty of unscientific practices, including “mixing science and litigation without disclosing potential conflicts of interest,” “pressuring scientists and graduate students with different research findings to retract their papers,” and “selectively using data that support their agendas.”

In 2021, a group of more than 20 fire ecologists led by Susan Prichard, Keala Hagmann, and Paul Hessburg published a trio of scientific reviews in the journal Ecological Applications, refuting some of the most persistent misinformation about wildfire. In answer to the question, “Are (fuels reduction) treatments unwarranted and even counterproductive?” they argued the evidence was clear: No.

Still, misinformation and confusion surround fuels reduction. For example, thinning, which by definition happens before a burn, is at times conflated with salvage logging, or harvesting mature but dead trees after a wildfire or a disease outbreak. While there are practical and ecological reasons for salvage logging, such as road safety or avoiding future wildfires in downed dead trees, the trade-offs between benefits and ecological detriments are less clear. Many scientists say more research is needed to employ salvage logging for ecological benefit.

“All these decimated towns were not taken out by tsunamis of flame raging through the woods — they were taken out by embers.”

Fuels reduction also has its limits. It can help save forests from obliteration — but it might not protect the towns nestled within them. This is because even low-intensity fires can ignite human-built structures from afar.

“All these decimated towns were not taken out by tsunamis of flame raging through the woods — they were taken out by embers,” said Pyne. “They come in as a kind of blizzard of sparks. Once a house or two gets started, then it spreads structure to structure.” Fuels reduction can help save forests, but saving towns means using fire-savvy construction: ignition-resistant building materials, ember-trapping ventilation systems, and defensible space around structures.

In short, thinning and prescribed fire are critical for preserving Western forests. But they won’t save forests on their own: Climate action is imperative, too.

The post How thinning could help prevent wildfires appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Millions of dead crabs ended up in the deep sea. Scientists still aren’t sure why. https://www.popsci.com/environment/millions-dead-crabs/ Fri, 10 Feb 2023 23:00:00 +0000 https://www.popsci.com/?p=511340
While masses of dead red crabs are known to wash up on beaches in California and Mexico, how millions of crab carcasses got to the bottom of the Pacific Ocean remains a mystery.
While masses of dead red crabs are known to wash up on beaches in California and Mexico, how millions of crab carcasses got to the bottom of the Pacific Ocean remains a mystery. DepositPhotos

The unexpected discovery of a mass grave of red crabs 4,000 meters below the ocean’s surface is puzzling scientists—and raising questions about the ecology of the deep sea.

The post Millions of dead crabs ended up in the deep sea. Scientists still aren’t sure why. appeared first on Popular Science.

]]>
While masses of dead red crabs are known to wash up on beaches in California and Mexico, how millions of crab carcasses got to the bottom of the Pacific Ocean remains a mystery.
While masses of dead red crabs are known to wash up on beaches in California and Mexico, how millions of crab carcasses got to the bottom of the Pacific Ocean remains a mystery. DepositPhotos

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

In 2015, scientists surveying a protected area of seafloor in the Pacific Ocean’s Clarion-Clipperton Zone (CCZ), a region known for its high concentration of the polymetallic nodules sought after by would-be deep-sea miners, came across an eerie sight: a mass grave of millions of red crabs. This many dead crabs in one place is shocking enough, but at a depth of 4,000 meters, it was a baffling find.

“It took us three or four days to actually realize that these are pelagic crabs”—animals that are supposed to be much nearer the surface—says Erik Simon-Lledó, the lead author of a paper documenting the find and a marine biologist at the United Kingdom’s National Oceanography Centre. “It is a bit embarrassing, but it [was] so unexpected. Nobody had heard of such a massive deposition in the abyss.”

While red crabs are abundant in the eastern Pacific and are noteworthy for washing up en masse on beaches in California and Baja California, Mexico, finding them at such depth in such numbers is unheard of. Even more bizarre, the grave was 1,500 kilometers offshore. This is so far from the crabs’ spawning areas off the northwestern United States that it would have taken the current at least a year to push them to the point where they eventually sank.

So many crabs drifting far offshore and sinking to the seafloor would have attracted droves of hungry predators and scavengers, so the scientists aren’t sure how the crabs remained relatively intact. Most creatures on the abyssal seafloor feed on the tiny bits of waste that fall from the surface, making these crabs, in comparison, a fantastic dinner. “Get your forks, mates, we have quality dinner now,” says Simon-Lledó with a laugh.

The researchers suspect the sheer number of crabs involved has something to do with it. Millions of crabs descending to the seafloor are simply too many to be eaten. “Swarms can have millions and millions of crabs, especially when there are perfect conditions for their development, like algal blooms or different climatic events,” explains Simon-Lledó.

The scientists can’t say whether this mass “crab fall” is just a one-off coincidence or a periodic event. Masses of millions of dead crabs do wash up on beaches every couple of years, so in principle the same could be happening in the abyss but has gone unnoticed until now. That’s Simon-Lledó’s preferred interpretation, which is supported by the fact that there were two to three times more scavengers in the crab graveyard than in the rest of the scientists’ survey area in the CCZ.

The researchers calculate that this single event represents one and a half times the carbon flux that the area would normally get in a whole year. The excess carbon will eventually make its way into the food web, supporting a richer ecosystem than we would typically imagine existing here—an ecosystem where deep-sea mining could do a great deal of damage.

The area where Simon-Lledó and his colleagues found the crabs is not being eyed for mining. But Amanda Ziegler, a researcher at UiT the Arctic University of Norway who was not involved in the study, says it is the same kind of habitat as other areas in the CCZ that do have claims for deep-sea mining. “So it is possible that this kind of crab fall [has] occurred somewhere that might also be a claim area, but that’s hard to say since it’s so difficult to assess such a big area,” she says.

Trips to the deep sea are expensive, and funding bodies often prioritize mapping a new area over returning to one that is already mapped. So the research team has not been able to return to see the aftermath of the crab fall or to see whether there have been more depositions.

“Our paper shows that there is more environmental variability than we would think in abyssal areas,” says Simon-Lledó. “It also shows how little we know about this environment that we will potentially be mining in a few years.”

This article first appeared in Hakai Magazine and is republished here with permission.

The post Millions of dead crabs ended up in the deep sea. Scientists still aren’t sure why. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Citizen science is another great form of nature therapy https://www.popsci.com/environment/citizen-science-nature-wellbeing/ Thu, 09 Feb 2023 17:00:00 +0000 https://www.popsci.com/?p=510974
A woman in a field observes a plant.
Actively observing nature can be beneficial to our well-being. Michael Pocock

Slowing down and spending purposeful time in the wilderness is good for people and the planet.

The post Citizen science is another great form of nature therapy appeared first on Popular Science.

]]>
A woman in a field observes a plant.
Actively observing nature can be beneficial to our well-being. Michael Pocock

When the COVID-19 pandemic shut down normal life in 2020, nature became a refuge for many people  cooped up inside. As pandemic related travel disturbances continued, the National Park Service saw record numbers of visitors, as spending time outdoors was safer in terms of virus spread.

Even when a pandemic isn’t raging, spending time outside reduces stress, improves cognition, and can help us sleep better. All of this can help people lead happy, healthy, and productive lives, which helps the economy and lowers healthcare costs

[Related: Nature saves us trillions of dollars in healthcare.]

Citizen science has been designed to use people power for the benefit of scientific knowledge, but it can also help the citizens doing the science as well. A study published February 9 in the journal People and Nature found that involvement in citizen science boosts wellbeing and connection to nature for participants. 

“People connect with nature in different ways, so it’s great to see nature-based citizen science can provide another form of active engagement that can strengthen the human-nature relationship,” said study co-author Miles Richardson from the Nature Connectedness Research Group at the University of Derby in the UK, in a statement. “When combined with noticing the positive emotions nature can bring, citizen science and help unite both human and nature’s wellbeing.”

The study was conducted during pandemic lockdowns in 2020 by the UK Centre for Ecology & Hydrology (UKCEH), the University of Derby, and the British Science Association. Five hundred volunteers from across the United Kingdom were randomly assigned to carry out a 10-minute nature-based activity at least five times over a period of eight days: a survey of pollinating insects, a butterfly survey, spending time in nature and jotting down three good things they noticed, or a combination of both. 

Researchers surveyed the participants both before and after the citizen scientists went out into nature, as a way to assess differences in connection to nature, well being, and pro-nature behavior. 

After completing their assignments, the researchers found that all volunteers showed increased scores in feeling connected to nature. 

“It gave me permission to slow down,” wrote one participant

“It made me more aware of nature in all aspects of the environment,” said another

“It reminded me that small things can make a big difference to my mood,” observed another volunteer.

[Related: Birders behold: Cornell’s Merlin app is now a one-stop shop for bird identification.]

The volunteers who wrote down the three good things they noticed while out in nature.Those who also combined those three positive things with nature recording activities (like counting pollinating insects) said that they were more likely to adopt more pro-nature behaviors beyond their involvement with this study. Some of those behaviors involved planting more pollinator friendly plants in their own gardens or helping build wildlife shelters. 

“Being in and around nature is good for our wellbeing, and we’ve shown that focused, active engagement with nature is just as important – whether that is ‘mindful moments’ in nature or taking part in citizen science,” said Michael Pocock, ecologist and academic lead for public engagement with research at UKCEH, in a statement. “This has been a valuable exercise for us in exploring how we can make citizen science even better. We now know that if we design future projects with additional nature-noticing activities, for example, we can enhance people’s own connection to nature, while still collecting valuable data.”

The post Citizen science is another great form of nature therapy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
In the latest State of the Union, Biden highlights infrastructure, chips, and healthcare https://www.popsci.com/science/biden-state-of-the-union-2023/ Wed, 08 Feb 2023 15:00:00 +0000 https://www.popsci.com/?p=510668
U.S. President Joe Biden delivers the State of the Union address to a joint session of Congress on February 7, 2023 in the House Chamber of the U.S. Capitol in Washington, DC.
U.S. President Joe Biden delivers the State of the Union address to a joint session of Congress on February 7, 2023 in the House Chamber of the U.S. Capitol in Washington, DC. Jacquelyn Martin-Pool/Getty Images

In his second SOTU address, Biden urged Congress to ‘finish the job.’

The post In the latest State of the Union, Biden highlights infrastructure, chips, and healthcare appeared first on Popular Science.

]]>
U.S. President Joe Biden delivers the State of the Union address to a joint session of Congress on February 7, 2023 in the House Chamber of the U.S. Capitol in Washington, DC.
U.S. President Joe Biden delivers the State of the Union address to a joint session of Congress on February 7, 2023 in the House Chamber of the U.S. Capitol in Washington, DC. Jacquelyn Martin-Pool/Getty Images

On February 7, President Joe Biden gave his 2023 State of the Union Address to a joint session of a newly split Congress, with Democrats controlling the Senate and Republicans controlling the House. This is what he had to say on major science, tech, and health related issues. 

Health policy priorities—COVID and healthcare

Biden touted the progress made to combat COVID-19 since he first took office in January 2021, when the COVID-19 vaccine rollout was just getting underway since beginning in December 2020. “COVID no longer controls our lives,” he said, “while the virus is not gone, thanks to the resilience of the American people, and the ingenuity of medicine, we have broken COVID’s grip on us.” 

The administration stands to end the public health emergency on May 11. The change to formally end the national emergency declarations would restructure the federal government’s response to treating the virus as an endemic threat to public health that can be managed through normal authorities.

[Related: Biden will end COVID-19 national emergencies in May. Here’s what that means.]

He also pointed to several policies Congress can still achieve to deliver cheaper prescription drugs to the American people—for example continuing to expand Medicaid under the Affordable Care Act, and capping the cost of insulin at $35 for seniors on Medicare.

“But there are millions of other Americans who are not on Medicare, including 200,000 young people with Type I diabetes who need insulin to save their lives,” said Biden. “Let’s finish the job this time. Let’s cap the cost of insulin at $35 a month for every American who needs it.”

This was the first State of the Union after the Supreme Court overturned Roe v. Wade, and President Biden vowed to veto any national abortion ban. The Biden administration has taken steps to expand abortion access in the wake of the decision, including steps to make it easier to access the prescription pills used in a medication abortion. 

He touted the success of the PEPFAR program that has saved 25 million lives and transformed  the global fight against HIV/AIDS and the Cancer Moonshot program that Biden led while Vice President to Barack Obama. The program is a very personal initiative to the Bidens after their son Beau died of a brain tumor in 2015. 

“Our goal is to cut the cancer death rate by at least 50 percent over the next 25 years. Turn more cancers from death sentences into treatable diseases. And provide more support for patients and families,” said Biden.

When it comes to tech, CHIPS takes the spotlight

American ingenuity in tech was also on full display, with Biden highlighting the bipartisan Infrastructure Law and CHIPS and Science Act, especially when it comes to the jobs that will be created by investing in infrastructure and tech. The legislation devotes more than $50 billion intended to spur semiconductor manufacturing, research, development, and more in the United States.

[Related: Can the Chips and Science Act help the US avoid more shortages?]

“Semiconductors, the small computer chips the size of your fingertip that power everything from cellphones to automobiles, and so much more. These chips were invented right here in America. Let’s get that straight, they were invented in America,” said Biden. “America used to make nearly 40 percent of the world’s chips. But in the last few decades, we lost our edge and we’re down to producing only 10 percent.”

He also announced a new standard that will require all construction materials used in federal infrastructure projects to be made in America and stressed his administration’s commitment to providing Americans with universal access to high-speed internet. 

Climate and the environment—wins and losses

The Biden Administration’s recent flurry of environmental legislation amidst the past year’s spike in gas prices shifted the spotlight on his policies on climate change.  

The Inflation Reduction Act is also the most significant investment ever to tackle the climate crisis. Lowering utility bills, creating American jobs, and leading the world to a clean energy future,” said Biden, before touting the investments aimed at modernizing infrastructure in the face of a changing planet from electric grids to floods and water systems and clear energy.

[Related: 4 ways the Inflation Reduction Act invests in healthier forests and greener cities.]

He also called the $200 billion in profits brought in by oil and gas companies during a global energy crisis “outrageous,” and proposed quadrupling the tax on corporate stock buybacks to encourage more investment in increasing domestic energy production and keeping costs down.    

High profile attendees included wildfire experts and cancer survivors

U2 frontman Bono, Tyre Nicols’ family, and Paul Pelosi were among the high profile guests for the 535 members of Congress. Several were innovators, activists, and scientists making a mark on the science and tech world. 

These included Jennifer Gray Thompson, the CEO of After the Fire USA,  Paul Bruchez, a rancher who has worked with other landowners to restore a part of the threatened Colorado River, Grover Fugate, the Executive Director of the Rhode Island Coastal Resources Management Council (CRMC), and  David Anderson, President and CEO of NY-CREATES and the Albany Nanotech Complex. 

Some of the guests invited to the First Lady’s Box included Maurice and Kandice Barron whose daughter Ava is a survivor of a rare form of pediatric cancer, Amanda Zurawski, a woman from Texas who almost lost her life to a miscarriage due to Texas’ abortion law, and Lynette Bonar, an enrolled member of Navajo Nation who helped open the first cancer center opened on a Native American reservation.

The post In the latest State of the Union, Biden highlights infrastructure, chips, and healthcare appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Bacteria and fungi are the first to start rebuilding charred forests https://www.popsci.com/environment/wildfire-recovery-microbes/ Tue, 07 Feb 2023 22:00:00 +0000 https://www.popsci.com/?p=510528
A beefsteak fungus growing in a forest.
A beefsteak fungus growing in a forest. Deposit Photos

The remains of wildfires offer up a huge buffet of nutrients for certain microbes.

The post Bacteria and fungi are the first to start rebuilding charred forests appeared first on Popular Science.

]]>
A beefsteak fungus growing in a forest.
A beefsteak fungus growing in a forest. Deposit Photos

Wildfires have a multitude of impacts on an ecosystem. While many are negative, some animals thrive after fire, from the charred remains serving as shelter for insects and small animals like the black-backed woodpecker and spotted owl.

In a study published February 6 in the journal Molecular Ecology, researchers from the University of California, Riverside (UCR) examined how the 2018 Holy Fire in California’s Orange and Riverside countries affected bacteria and fungi over time after the flames were extinguished. The fire burned more than 23,000 acres of land and destroyed 24 structures.. 

[Related: Wildfires are burning away snow in the American West.]

Sydney Glassman, a UCR mycologist and co-author of the study, led a team of researchers into the burn scar or the noticeable mark on the land left by a wildfire. “When we first came into fire territory, there was ash up to my shins. It was a very severe fire,” Glassman said in a statement.

A mushroom grows out of the dark charred remains of a wildfire.
Signs of microbial life in the 2018 Holy Fire burn scar in California. CREDIT: Sydney Glassman/UCR Sydney Glassman/UCR

Over the next year, the team visited the scar nine times, comparing the charred earth with samples from unburned soil found nearby. The mass of microbes dropped between 50 and 80 percent and didn’t recover during that first year post-fire. But some species found a way to live on. 

“Certain species increased in abundance, and in fact there were really rapid changes in abundance over time in the burned soils,” Glassman said. “There were no changes at all in the unburned soils.”

Multiple microbes took turns dominating the burned soil in the first post-fire year, with distinct shifts in microbes over time. “As one species went down, another came up,” Glassman said.

In the early days post-fire, microbes with a high tolerance for fire and higher temperatures were found. As time went on, the team found more fast-growing organisms that have a lot of spores dominating, as they appeared to be able to take advantage of space with little microbial competition. 

The organisms that could consume charcoal and post-fire, nitrogen-filled debris tended to be most dominant towards the end of the year. 

Fabiola Pulido-Chavez, a UCR plant pathology PhD candidate and co-author of the study noticed that the genes involved in methane metabolism doubled in post-fire microbes. Methanotrophs are microbes that regulate the breakdown of methane, which is a potent greenhouse gas

“This exciting finding suggests post-fire microbes can ‘eat’ methane to gain carbon and energy, and can potentially help us reduce greenhouse gasses,” Pulido-Chavez said, in a statement.

The team tested whether the fungi and bacteria could thrive at different points in time based on their individual traits or if another reason was behind the shifts in dominance in the soil.

[Related: Fires can help forests hold onto carbon—if they’re set the right way.]

“We think one organism can’t be good at all the skills necessary to thrive in a burn scar,” Glassman said. “If you’re good at tolerating heat, you’re probably not as good at growing fast.”

The process in the post-fire soil is similar to what happens in the human body under stress. For example, when a patient takes an antibiotic, the medicine destroys gut bacteria and new organisms begin to show up that either weren’t prevalent or weren’t there before at all. Eventually, the gut bacteria may return to pre-infection state, but that’s not guaranteed. 

The team is working to understand what processes help the land return to the pre-fire state. This knowledge could change older theories on how plants adapt to wildfires, since microbes like these were not factored into them. “To me, this is exciting, as microbes have long been overlooked, yet they are essential for ecosystem health,” Pulido-Chavez said.

A yet unanswered question is whether plant and microbe adaptations that have developed here could adapt again in response to another megafire or recurrent fires in the same area. Future research could look into how rising temperatures, earlier snowmelt, longer dry seasons, and increased wildfires caused by climate change has on natural burn recovery. 

“Things can recover, but it takes time, and whether or not the land recovers after super-frequent megafires is another story. Can recovery time keep pace with megafires? We don’t know yet,” Glassman said.

The post Bacteria and fungi are the first to start rebuilding charred forests appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The last thread of hope to revive California’s trees is vanishing https://www.popsci.com/environment/wildfire-california-trees/ Mon, 06 Feb 2023 02:00:00 +0000 https://www.popsci.com/?p=509742
"In a hundred years, we will have lost almost 20 percent of our forests."
"In a hundred years, we will have lost almost 20 percent of our forests.".

That could doom the state’s plan to fight climate change with the help of nature.

The post The last thread of hope to revive California’s trees is vanishing appeared first on Popular Science.

]]>
"In a hundred years, we will have lost almost 20 percent of our forests."
"In a hundred years, we will have lost almost 20 percent of our forests.".

This article was originally featured on High Country News.

Ecosystems aren’t landscape paintings so much as mosaics, with different pieces that grow and change over time. In healthy forests, patches of recent disturbance, such as fire or logging, sit alongside patches of grasses and shrubs, fast-growing trees and centuries-old mature forests. But these ecological patterns require a climate stability that no longer exists. 

Due to human-caused climate change, California’s forest mosaics are vanishing. According to a study published in AGU Advances last July, the state’s forests lost almost 7 percent, or just over 1,700 square miles, of tree cover since 1985. That’s an area larger than Yosemite National Park. In particular, forests in California’s southwestern mountains lost 14 percent of tree cover.

Jon Wang, the study’s lead author and an Earth systems scientist at the University of Utah, said that at the current rate, “in a hundred years, we will have lost almost 20 percent of our forests. That’s like all of Southern California’s forests being gone, or all of the Southern Sierras being gone.” 

Thousand-year-old forests now get only a decade or less between fires to recover. California’s forests are “never going to get a chance to become old-growth forest again,” Wang said. Instead, they may have “more of a permanent stunted state.” And aridification means that forests once considered fairly fire-resistant, such as old-growth coastal redwoods, can no longer rely on wet weather conditions for fire protection. 

The dramatic loss of many of California’s giant sequoias, ancient trees that lived with fire for thousands of years, particularly troubles Wang’s co-author James T. Randerson, an Earth systems scientist at the University of California, Irvine.

“You can extrapolate out what’s going to happen to the forest,” Randerson said. “It’s horrific.”

“You can extrapolate out what’s going to happen to the forest. It’s horrific.”

To track how California’s forests changed over the past few decades, researchers used machine learning, training an algorithm to identify vegetation types in satellite images taken every few days, dating back to 1985. The algorithm differentiated between three causes of tree death: wildfires, logging and drought. As it turns out, far more of California’s tree cover is disappearing due to wildfires than from drought or logging.

The sheer amount of data that this study provides is important, said Philip Higuera, a fire ecologist at the University of Montana, who was not involved with the research. “The ability to quantify changes, not only from fire, but from forest die-back, and from timber extraction — to be able to do all of those three at once — is really valuable, because it helps place them in context” throughout California, Higuera said.

To be clear, wildfires remain a natural part of healthy forest ecosystems across the West, and controlled burns are important tools in forest management. But California has a fire deficit. Colonizers stamped out Indigenous fire-management practices, so fuels keep building up, leading to ever more destructive conflagrations. Today, the astronomical costs of living in California’s cities encourage  people to move into forests, and fires follow. And those fires, combined with drought, are quickly changing California’s ecosystems. 

With effective fire management, some Northern California forests might eventually grow back. But in the southern mountains, where forests are dying even without fires because of drought stress, chaparral may replace trees permanently. 

One limitation of this study is its timescale. “Thirty-five years is a long study from the perspective of using satellite data, but in the context of forest development and ecosystem change, it can still be relatively short,” Higuera said. Wang and Randerson also cautioned that this research doesn’t model future fire recovery, so more work needs to be done before drawing conclusions about whether these ecosystem changes are permanent. 

Meanwhile, California is proposing an ambitious plan to achieve net-zero greenhouse gas emissions by 2045. Right now, Wang said, the carbon offset market is really focused on growing trees. But his data suggests that California may have to lower its expectations. “We might be moving to a paradigm of saving what’s there,” he said.  

The post The last thread of hope to revive California’s trees is vanishing appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Oyster farms are all the rage—until they block your ocean views https://www.popsci.com/environment/oyster-farming-conflict/ Sun, 05 Feb 2023 00:00:00 +0000 https://www.popsci.com/?p=509734
Compared with other forms of aquaculture, oyster farming is relatively benign, with less infrastructure on the surface and fewer inputs (no need for regular feeding, for instance). But being low tech and low impact doesn’t stop the conflict over use of the ocean commons.
Compared with other forms of aquaculture, oyster farming is relatively benign, with less infrastructure on the surface and fewer inputs (no need for regular feeding, for instance). But being low tech and low impact doesn’t stop the conflict over use of the ocean commons. DepositPhotos

Despite the desire for local and sustainable seafood, oyster farmers and communities from New York to Rhode Island clash.

The post Oyster farms are all the rage—until they block your ocean views appeared first on Popular Science.

]]>
Compared with other forms of aquaculture, oyster farming is relatively benign, with less infrastructure on the surface and fewer inputs (no need for regular feeding, for instance). But being low tech and low impact doesn’t stop the conflict over use of the ocean commons.
Compared with other forms of aquaculture, oyster farming is relatively benign, with less infrastructure on the surface and fewer inputs (no need for regular feeding, for instance). But being low tech and low impact doesn’t stop the conflict over use of the ocean commons. DepositPhotos

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

From the shore, you have to squint to see them—the 50 or so objects that look like large black duffel bags floating in several rows near the surface of Napeague Bay in East Hampton, New York. And if it’s dark, or the wind churns up waves, you might not spot them at all. To get a better look from the beach, you really need binoculars, which is what Adam Younes uses when he wants to do a visual check of these bobbling floats marking his oyster farm. But on most days, he putters his small boat 805 meters offshore to the site, easily navigating the nine-meter channels between the rows, to check on the cages suspended just below the water’s surface. Within each cage, hundreds of oysters fatten up until their salty, soft inner bodies are big enough to be served at seaside restaurants and galas and probably aboard the yachts that occasionally sail by.

In 2016, Younes picked this four-hectare plot, about half the size of a baseball field, because it was a 10-minute drive from his house. He named his oyster farm Promised Land, a biblical reference to a peaceful resting place. The area’s shores and marshes and quietly swaying woods have always felt like heaven to him.

Yet, the name didn’t live up to reality. Younes soon found out that some people didn’t want the oysters there, including members of the coveted Devon Yacht Club who often convene in a one-story cedar-shingled building roughly half a kilometer away on the shores of Napeague Bay. Between 2018 and 2021, members from Devon and other yacht clubs, along with area residents, aired their grievances about aquaculture and oyster farms like Younes’s during a series of long, and what at times felt like deadlocked, public meetings. The meetings were part of a 10-year review of the aquaculture lease program by Suffolk County, which East Hampton is a part of. Locals, particularly those who were boaters, accused oyster farmers of obstructing access to nature with their floating gear. “We’re going to pave paradise and turn it into a parking lot,” one resident said, paraphrasing a popular antidevelopment song to make a point about floating farm gear.

Younes never imagined that his farm, his promised land, would unleash so much disapproval. More than a year later, the memories of the review continue to haunt him. “Talking about this still makes me sick and angry,” he says, with a heavy sigh. “It was an emotional fight.”


Oyster farmers across the United States and parts of Canada are being confronted by a growing population of coastal residents who are upset about where farms are going up. Along the US East Coast, as well as in other prime oyster-growing regions such as Washington State and British Columbia, tempers have flared. Coastal homeowners are making passionate speeches at local meetings and enlisting lawyers, as Devon Yacht Club did, to help appeal farm leases they deem are too close to where they live and play. “It’s probably as contentious as it’s ever been,” says Ben Stagg, who, until the end of 2022 was chief of shellfish management at the Virginia Marine Resources Commission, an agency that manages that state’s oyster leases. At one point in 2022, Stagg had about 260 lease applications to look through, and of those, 30 percent were being protested by locals, a rate that he says has generally tripled in recent years.

The disputes come just as North American interest in oysters is growing. Oysters are increasingly recognized as a sustainable seafood, and they capture their own food from the water column, benefiting the ecosystem. An oyster is like nature’s Brita pitcher: it can filter about 189 liters of water per day, removing excess nitrogen and phosphorus. As climate change progresses, oyster aquaculture could also help mitigate some of the issues coastal communities are facing, suggests Nick Ray, a biogeochemist at Cornell University in New York who does research in aquaculture. The oyster’s filtering abilities reduce pollution, and cages full of oysters serve as a living coastal buffer against storm surges and erosion, he says.

After struggling early in the pandemic, some farmers in the United States described the summer of 2021 as “bonkers” as they worked overtime to deliver oysters to customers who were craving the salty bivalves after a long period of COVID-19-induced restaurant closures. Chuck Westfall, an oyster farmer and executive of the Long Island Oyster Growers Association, says that demand was so high people kept buying even after all the premium oysters were sold, gladly snatching up those he would consider a little subpar because they hadn’t had the time to grow. Farmers are saying 2022 was another good year, though demand cooled a bit.

Unsurprisingly, potential newcomers to the industry seem to be taking note. In some areas, like Maine and North Carolina, applications for oyster farms are on the rise. In most states, farmers essentially rent water space for a set amount of time. Stagg approves leases as big as 101 hectares, roughly one-third the size of Central Park in New York City. In Suffolk County, Younes and other farmers can lease four hectares for 10 years. Many states have interactive maps that show the available space, sites the state has vetted and deemed appropriate for aquaculture (although in some places, the auditing occurred long before nearby residential development took off). A farmer submits an application for a particular site and a review process follows—resource managers like Stagg consider factors such as the farm’s size, water depth, and other nearby activity before approving the application. In some states, local residents must be notified of the proposal, and there’s a public comment period where they can chime in. But not every state allows input, and even where there are opportunities for public comment, residents often argue they are not properly informed about a prospective farm’s size, location, or methods.


Friction in the oyster world seems to stem from differing beliefs about what the water should primarily be used for: work or leisure? Is it for kayaking and boating or for producing food? Is it meant to be devoid of “eyesores” so people can look onto a smooth, glassy surface from their decks or yachts? Some people would say all of the above, that it’s all possible, but areas where those demands overlap are where the conflicts tend to erupt. In uberwealthy East Hampton, members of the Devon Yacht Club and other residents argued that Younes’s floating cages were a hazard to navigation. Curt Schade, one of the club’s former board members, says the area is heavily used for recreational boating, especially in the summer when the club runs a youth sailing program. In public review hearings, club members also made sure to mention Devon’s historical ties: they had been sailing those waters for more than 100 years. “If the cages had been on the bottom, there really would have been very little conflict,” Schade says, referring to another aquaculture method where oyster cages are anchored to the sea or bay floor, rather than floated near the surface.

Younes points out that his cages are near the surface only between June and October, which helps him get higher yields since there is more food for the oysters to feast on near the surface and he’s better able to monitor the shells and address any problems; after that, he drops the cages to the seafloor. Unfortunately, the months the cages are on the surface are also peak sailing season.


If you travel north from East Hampton across Long Island Sound, you’ll land on the southern shores of Rhode Island. Here, the landscapes feel nearly identical to East Hampton: cedar-shingled homes near smooth beaches framed by swaying beach grass. The community issues echo across the sound, too—here, the waters have also become a source of tension between some residents and oyster farmers. The sleepy town of Tiverton, tucked into the southeastern corner of the state, may not have the same concentration of monied residents as East Hampton, but people are just as adamant about protesting certain oyster farms. In the summer of 2021, dozens of yellow signs began showing up on manicured lawns in Tiverton, urging residents to Act Now!!! The signs were put up by community members who oppose a proposed oyster farm. Unlike Younes’s farm, which is accessible only via boat, the roughly half-hectare farm on the Tiverton site could be reached by wading into the relatively shallow waters of the Sakonnet River. Brothers John and Patrick Bowen, the two farmers behind the proposed site, were attracted by the alternative to running a boat to a location farther offshore and also noted the site wasn’t great for swimming or kayaking.

But some residents think the farm’s placement is actually its flaw and have differing ideas about the area’s use. “It’s a public access point with free parking, used by many to fish, kayak, and swim,” says Kenneth Mendez, a Tiverton resident. He equates the operation’s location to putting an organic farm in the middle of a public baseball field. “I think most people would say, No, we’re not okay with that,” he says. “There are other areas to farm. And this area is valued and has social good and impact for all those who use it.”

In both coastal communities, residents voice concerns that oyster farms would be privatizing and profiting from space that has always been public.

Farmers think these space concerns are overblown. “Kayakers and small boats would be able to easily navigate through our lease area,” the Bowen brothers explain by email. “Our proposal will not prevent anyone from fishing. All proposed gear will be subtidal, not visible above the waterline (except four mandatory corner marker buoys).”

Because his site is 805 meters offshore, Younes believes boats have more than enough room to go around the farm. “And they do it every day. Sometimes they even go through my site,” he says. When he submitted his public comment letter during the review process, he attached several photos. They showed bluebird skies, small waves cresting on the bay, and a smattering of sailboats, all appearing to navigate the waters around this operation with ease. At least in those still images, the farm and boats seem to coexist peacefully, all enjoying a promised land.

Other industry supporters point out that boating comes with the inherent responsibility of paying attention and navigating around objects, be it other boats or oyster farms. “If you are a recreational boater, you should be aware of hazards—there are many,” says Karen Rivara, president of the East Coast Shellfish Growers Association and an oyster farmer in Southold, New York. “Other boaters are the biggest danger, not gear.”

On the briny, unsettled surface, these disagreements can sometimes look like a class rift—a clash between the working class and coastal elites, between people who make their living in the water and those whose work has afforded them the opportunity to purchase properties, like second homes, on the water. In the past few years, there’s been an influx of people and money into many coastal towns. By some estimates, the population of Southampton, a wealthy area of New York that’s part of the Hamptons, nearly doubled in 2020 as affluent New Yorkers fled the newly circulating coronavirus. (Home prices in some areas doubled from 2020 to 2021; the median sale price in July 2022 was US $2.5-million, with several homes selling for $30-million or more.) A similar pattern unfolded in coastal communities in Rhode Island, North Carolina’s Outer Banks, and Maine.

As new residents pour in, the population shift could be ushering in people who might not have an appreciation for, or connection to, coastal economies. Although oysters have been harvested for centuries in the wild, aquaculture in its current form, with gear and floats, is comparatively new. Many people haven’t had the time to get used to it, let alone romanticize it like they do other types of marine industries. “If you go to Maine, there are far more lobster buoys per acre than there are oyster cages in Narragansett Bay,” says Jules Opton-Himmel, owner of Walrus and Carpenter Oysters in Narragansett, Rhode Island. People paint pictures of the colorful buoys or travel to see them, thinking they’re quaint, he says. Lobster harvesting is “part of the culture there, and people accept it and like it. But there’s not that cultural history [with oyster farming] here.”

Still, it’s important not to generalize—research shows that wealth is actually not a strong predictor of aquaculture support. A 2015 study from Vancouver Island University in British Columbia found that factors like affluence or even living near the water or knowing someone who works in the aquaculture industry aren’t good indicators of a person’s attitude toward oyster farming. Instead, attitudes seem to vary by community, says study coauthor Grant Murray, now a marine social scientist at Duke University in North Carolina. “And we don’t really know why that is … it could be due to local culture or networks of people who talk to each other and convince one another that it’s good or bad.”

The tensions between residents and farmers bring up a larger question: If the water is a public good, whose needs and wants will ultimately prevail? And who gets to decide that? In Virginia and other states, resource managers like Stagg make the call. If a lease is protested, Stagg would try to work with both parties to come up with a compromise, becoming less like a government official and more like a marriage counselor. Typically, after some back and forth between farmers and residents, he was able to scooch leases a few meters over. It doesn’t sound like a lot, but it’s often enough to appease both parties. But not every alternate location will work. To the general public, water may look like water pretty much anywhere you go. But factors such as depth, currents, temperature, and sediment composition can vary even within just a few meters and can impact the success of an oyster-growing site.

Stagg also admits that finding common ground between residents and farmers is getting harder. “I’ve been doing this a long time, and I think I am pretty good at trying to negotiate these [leases]. But it’s getting really difficult because people really dig in pretty, pretty hard,” he says. “People don’t have unfettered access to the water like they did in the past. And they don’t like that.” He started to turn down lease applications in areas he thought would be contentious.

If resource managers like Stagg can’t help opposing groups find a compromise, cases usually move on to the local city council or courts, where they can get stuck as appeals and counter-appeals are volleyed between parties. The process becomes costly, time consuming, and emotionally taxing. When community members objected to one of Opton-Himmel’s leases in Rhode Island, he tried to resolve things the traditional way: by going to local meetings to explain his business plan. But his neighbors remained unsatisfied, and they hired an attorney. So he did, too. Yet neither group would budge.

One day, Opton-Himmel received an email from the Young Farmer Network with an ad for a mediation service; he called the number and set up an appointment. A few months later, on a July afternoon, Opton-Himmel and seven community members met with a mediator at the public library. He remembers the initial mood as tense: “Nobody shook hands, and this was before the pandemic.” But a few hours later, the tenor changed as each side got to know the other. Opton-Himmel learned that these residents had been saving for decades to retire on the water, and the view they were getting with his floating cages in the distance wasn’t the empty bay they had been daydreaming about. “And they said [to me], ‘Oh, well, we just thought you were a greedy capitalist doing an illegal thing that you knew you could get away with,’” he says. (There was a misunderstanding about how many cages he could use.) After several meetings, they reached a compromise: Opton-Himmel agreed to move his farm to another site, but he could expand and have eight times more cages. He still had to get all the necessary government approvals, but residents agreed to not protest his lease. “The mediation was the key to finding a solution,” he says. “Otherwise, we would probably still be fighting to this day.”

On Long Island, oyster farmers aren’t sure they have anything more to give. “I don’t see much room for compromise because we’ve already given up quite a bit,” says Younes. After the 10-year review process, Younes was able to keep his farm in place, but the county took away nearly 5,200 hectares of potential aquaculture cultivation zone. “Those are economic opportunities and aquaculture opportunities for the future of Suffolk County that are gone,” he says, adding that he’s heard that the exhausting review process has deterred others from setting up new farms.

States have been looking for ways to get ahead of the conflict. Instead of leasing out smaller parcels of water in increasingly developed areas, some states, like North Carolina, are considering designating aquaculture zones in more remote areas—say, 50 or 100 hectares of water subdivided into several farms. While this idea could mitigate conflicts between neighbors, Murray says that there are risks to lumping everyone together. Storms and water-quality issues, for example, could destroy entire oyster yields. And there’s no guarantee that those remote shorelines won’t eventually become desired by people looking for their own slice of coastal paradise, the next promised land. In Tiverton, Mendez, an opponent of the current location of the Bowen farm, supports something relatively more modest: that oyster farms be placed at least 305 meters from the shore. Similar efforts have been successful in places like New Zealand, which requires a much more significant five-kilometer buffer between the coast and aquaculture farms. (Of course, this solution means that farmers are burning more fuel to get to their sites.) But even that cushion may not appease dissenters: in Suffolk County, Younes and other farmers are already required to be at least 305 meters offshore, and that regulation clearly hasn’t been enough to dodge conflict.

As coastal communities continue to squeeze in more people, more yachts, and more recreation, states might have to revisit current aquaculture programs to see what’s viable now. Farmers and residents may find that compromise is easier when they channel the creatures they’re fighting over. Not by hardening their shells, but instead by softening their stances about what can and can’t be done on the water so that they see each other as neighbors who can coexist, rather than opponents. Oysters can be an important protein for the future and a buffer against some climate change impacts only if society can balance competing interests.

This article first appeared in Hakai Magazine and is republished here with permission.

The post Oyster farms are all the rage—until they block your ocean views appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Nightmare-fuel fungi exist in real life https://www.popsci.com/environment/zombie-fungus-real-life-diseases/ Fri, 03 Feb 2023 21:00:00 +0000 https://www.popsci.com/?p=509836
Fly with cordyceps zombie fungus growing out of its head on black background
A "zombie fungus"-infested fly from the Andean cloud forest. While Ophiocordyceps does prey on many insect species, chytrids pose a bigger threat to wildlife. Daniel Newman - stock.adobe.com

You're more likely to have Cocci infiltrate your lungs than cordyceps burst out of your head.

The post Nightmare-fuel fungi exist in real life appeared first on Popular Science.

]]>
Fly with cordyceps zombie fungus growing out of its head on black background
A "zombie fungus"-infested fly from the Andean cloud forest. While Ophiocordyceps does prey on many insect species, chytrids pose a bigger threat to wildlife. Daniel Newman - stock.adobe.com

The first three episodes of HBO’s The Last of Us have a lot to say about fungi. The series begins with a warning, as a gray-haired epidemiologist played by actor John Hannah cautions us that some fungi, including Ophiocordyceps, seek not to kill but to control” the behavior of the animals they infect. Later, a mycologist at the University of Indonesia, played by Christine Hakim, explains that there is no medicine nor vaccine to fight off such a fungus in humans. What she proposes next—that our only solution to an emerging fungal epidemic is to “bomb this city and everyone in it”—is prime cinematic hyperbole. Although we fight these infections with intravenous therapy, not incendiary devices, there’s still real cause for concern when it comes to fungi.   

The fungi that colonize our vast planet, though mostly a far cry from the phantasmic organisms that transform people into zombies, can pose serious threats to agriculture, biodiversity, and human health, especially in an increasingly warmer world. These fungi are precisely the ones you should be familiar with and, in some cases, fear.

[Related: Ancient frozen viruses don’t pose a threat to your health—yet]

Common human-associated fungi, which the public perceive as “bad” or “gross,” such as the ones that cause athlete’s foot, dandruff, run-of-the-mill yeast infections, and toenail fungus, are not the ones that keep doctors awake at night. But you can’t sell what you can’t see so Hollywood continues to play up the behavior-modifying properties of a few exceptional fungi at the expense of the truly invasive ones that are responsible for hospital stays and a majority of patient deaths. 

“From a clinical perspective, the impact of these fungal diseases is really underappreciated,” says Bridget Barker, an associate professor of mycology at Northern Arizona University. “The patients get really sick before they get intervention.” Because many fungi opportunistically infect already sick patients, it complicates our understanding of their role in patient deaths and probably helps explain their near absence from the public conversation.  

Even for physicians, especially those in many parts of the world where some of these fungal infections are most prevalent, “the biggest challenge is making the diagnosis,” says Ilan Schwartz, a physician at Duke University in North Carolina who specializes in fungal diseases. 

In some places, clinicians still lack even the most basic tests, which can lead to an incorrect determination. By the time they realize a fungus, not a bacterial infection like tuberculosis, is causing the disease, treatment is generally less effective and can unfortunately lead to death.  

But, if caught early enough, therapies can be very effective.             

Tried-and-tested fungal treatments

There are three main classes of antifungals, medications that kill or suppress fungi, according to Schwartz. Of these, only one (azoles) can be taken as a pill outside the hospital setting. The negative side effects of the other two, echinocandins and polyenes, require professional medical oversight. “Any resistance to any one of these classes is hugely important and really restricts our ability to treat patients,” Schwartz explains.      

And just how far-fetched is the emergence of fungi that resist our best drugs? One soil-dwelling fungus that also causes lung infections, Aspergillus fumigatus, shows resistance in 10 to 15 percent of isolates in some locations, Schwartz says. “The azoles they use in the field [to combat plant pathogenic fungi] are structurally very similar to the one we use in the clinic.” So what Joel told Ellie in the third episode of The Last of Us is right: Fungi are mutating. Though many have mastered the art of invading animals long ago, including people, they are becoming harder to fight once they are inside us.                        

Valley Fever fungi spores under microscope. Stained red and purple.
Cross-section of mouse lung tissue 5 days post-infection showing spherules of the fungus Coccidioides posadasii, which causes Valley Fever. The large spherules each contain hundreds of endospores and as the spherules mature they eventually rupture and release the endospores. Bridget Barker

Killer fungi outside of fiction

Some might argue that the fungi that live rent-free in our bodies are far more alarming than Ophiocordyceps. This includes fungi that cause Valley Fever, a disease in the southwestern US that is expanding northward and westward as the climate warms. Two closely related soil-inhabiting fungi responsible for this disease, Coccidioides posadasii and Coccidioides immitis (simply called “Cocci”), are a major concern. “We’re already seeing increases in areas in California where they hadn’t seen very many cases,” says Barker, who is among the world’s experts on Cocci. The Onygenales, the larger group of fungi that includes Cocci, are “concerning,” she notes, “because they cause disease in otherwise healthy people.” And because this particular group is co-evolving with mammals, “this is probably where the future threats will come from.”                

Schwartz has his own concerns about Cocci. “The environment that favors the growth of this fungus is also the environment that favors wildfires,” he explains. The epithelial changes that occur with wildfire exposure dramatically increases the risk of Valley Fever.” When the ash settles in our lungs, so too may these fungi.

[Related: Soil fungi are spreading lung infections to new territories]

Cocci is far from the only fungal infection showing up in the clinic. In fact, outside of specific geographic areas where they are endemic, few cases of Cocci or its Onygenales counterparts are reported nationwide. “What I see as a clinician on a day-to-day basis is primarily invasive candidiasis and aspergillosis,” Schwartz says. These fungal diseases affect people with weakened immune systems, many because of cancer or a viral infection, including HIV/AIDS, COVID-19, or flu. The human immune system can also be weakened by treatment with corticosteroids and immunosuppressant drugs, like ciclosporin (coincidentally, a drug naturally produced by a close relative of Ophiocordyceps). “Viruses themselves cause various forms of immunoparesis [or dampened immune response] that then allow secondary infections to come in and basically run amuck,” Schwartz explains.

Cicada infected by cordiceps zombie fungi on black background
Ophiocordyceps sobolifera-infected citrus cicada (Diceroprocta apache) nymph. Matt Kasson

Lessons from epidemics in wildlife

Fungi infect animals, too—with their own implications for human health. Some recent large-scale fungal disease outbreaks among wildlife include mass die-offs of amphibians, due to chytridiomycosis, and bats, due to white-nose syndrome. An unchecked fungal animal pandemic can look apocalyptic: a dark backwater bloated with hundreds of frogs floating belly up, for instance, with their fungus-stiffened legs rising out of the water.

Prior to the 1990s, only a handful of mycologists knew anything about these bizarre aquatic fungi we call chytrids. The most famous among them, Batrachochytrium dendrobatidis or Bd, is responsible for the extinction of some 90 amphibian species with another 124 species experiencing global population declines of 90 percent or more.

[Related: Tri-colored bats are imperiled by deadly fungal disease]

Why should we care about frog-killing fungi? Well, like with human pathogens, climate change can accelerate spread in areas where the fungus was previously kept in check according to Rabern Simmons, a chytrid expert and curator of fungi at Purdue University Herbaria. More importantly, we are just now beginning to see the “hidden human welfare costs” of biodiversity loss, he says. In Costa Rica and Panama, an area hard hit by chytridiomycosis, Bd-driven collapse of amphibians has led to more mosquitoes and malaria cases in humans, as per a 2022 study. “We are seeing human health implications because of a microscopic aquatic mobile fungus that hardly anybody knew about,” says Simmons.

There is nothing fictional about the threat some fungi pose to us. While Ophiocordyceps fungi will continue to manipulate and kill insects, as it has done over millions of years of co-evolutionary history with their invertebrate hosts, the human fungal epidemic on the horizon likely will not bother to modify our behavior. Our history is more likely to intersect with an unassuming mold lurking quietly in the soil or forming a biofilm in a hospital sink: ever adapting to our dwindling lines of defense. Though a world where we do too little to stop a rising tide of fungal pathogens is a horrific prospect, our collective failure to recognize the interconnectedness between pathogens, people, animals, and plants could be more terrifying.          

The post Nightmare-fuel fungi exist in real life appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The bizarre story behind a viral man-eating lion hoax https://www.popsci.com/environment/fake-lion-hunter-story/ Fri, 03 Feb 2023 02:00:00 +0000 https://www.popsci.com/?p=509352
Wildlife photo
DepositPhotos

The article about a lion hunter getting eaten is built out of an unverified plot, a staged video, and an old photo. People believe it anyway.

The post The bizarre story behind a viral man-eating lion hoax appeared first on Popular Science.

]]>
Wildlife photo
DepositPhotos

This story was originally featured on Outdoor Life.

The Internet can be a dark place, and it got a little darker on Friday, Jan. 27 when Esquire Middle East published an article titled “Trophy hunter eaten alive by brother of lion he shot for an Instagram post.” The headline alludes to controversy, bloodshed, revenge, and a debate over trophy hunting. But there’s one problem. Every element of the article is fake.

It appears the authors of Esquire Middle East, which is an offshoot of popular global lifestyle magazine Esquire with its own audience of over 580,000 readers, stitched the story together from three unrelated and inaccurate pieces of content. They used a photograph that has circulated the Internet for years without any attribution, an unsourced story from a sketchy website, and a fictional video produced for the Australian government as part of a two-year social experiment on the effectiveness of viral content. Here’s how one of the fakest hunting articles on the Internet came to be.

The Story

On Jan. 26 at 5 p.m., verified Twitter user Fight Haven tweeted an article from the River City Post.

The tweet caught fire quickly. By 3:30 p.m. the next day, it had 14.7 million views, 18,200 retweets, and 171,200 likes. It also had a bunch of replies, one of which would become crucial to the Esquire Middle East story. But we’ll get to that in a minute.

The River City Post is a WordPress website without any semblance of organization, masthead, or identification of who’s in charge. It’s just a constant stream of articles with titles like “Man Eliminates A 12 Year Old Kid For Throwing A Dead Snake On His Wife” and “Kim Kardashian Gets Lit Up Like A Christmas Tree In 1 Vs. 1 Squabble With Her Sister.” The posts don’t have bylines, they are simply attributed to admin.” The River City Post story was published on Jan. 20 and reads:

“A large cat [hunter’s] remains were found after he was eaten by the pride of lions that he was hunting in the fields of South Africa. The Lion Hunter is widely known across Instagram for his videos and pictures showing his successful hunts. The man was heard screaming from a distance by people outside near the South African city of Phalaborwa. But the lions quickly eliminated their prey and had already eaten most of his body before being chased off, leaving his head untouched. Police at first thought the man was a tractor driver who worked nearby until they seen he was still streaming on [Instagram] Live and identified the man.”

Without any sourcing, links to police reports, or further information on the Instagram account, the article-all 111 words of it-is completely unverifiable. The most real part of the post is where the author embedded an old video from CBS News detailing a similar story from February 2018, which could have been the inspiration for the article. Nowhere in the piece does it say the lion’s brother ate the hunter, which is arguably the most shocking part of the headline.

As of Jan. 30, the tweet sharing this article had over 22 million views. The replies are riddled with debate over hunting lions and loathing for the man and woman in the article’s photo. Repliers assumed the man in the photo was the Instagram-savvy lion hunter who was eaten by the dead lion’s brother. In reality, we have yet to figure out who he actually is, but the picture’s been used in web articles and forum posts going back to 2016.

It didn’t take long for one single reply to add a whole extra layer of “fake” to the chaos.

The Video

Eventually, one Twitter user replied to the tweet with a video which shows the moments before two hunters, one a professional and one a tourist, are supposedly attacked by a lion.

The video was originally posted to YouTube years ago. Below the anti-trophy hunting message in the caption, the poster gives credit to directors and producers, and includes a link to “The Woolshed Company,” an Australian production company that now goes by Riot Content. In the mid-2010s, Woolshed contracted with Screen Australia, a federal agency dedicated to supporting the country’s film industry, to produce “The Viral Experiment.”

Riot wrote, directed, and produced eight fake viral videos, including a surfer almost being struck by lightning, a bear chasing a snowboarder, the lion video, and others. In 2016, they published the videos on social media and tracked their progress.

“We set out to better understand exactly how to create short-form, highly sharable, ‘snackable’ content, that is capable of reaching worldwide mass audiences without the luxury of pricey media buys, ad campaigns, publicity strategies or distribution deals,” Screen Australia wrote on their website.

The viral experiment was a success. The lion attack video currently has 43 million views. Other videos from the experiment were broadcasted on news stations around the world. At the time, Men’s Journal and the Daily Mail were among the major media outlets to write about the lion video, although their coverage did center on the question of whether it was real. But it clearly didn’t matter if the videos were legit or staged. Websites were using them to drive engagement.

A Recipe for a Fake Article

In theory, tweeting the fake lion video in reply to the arguably fake River City Post article is harmless. Most Twitter threads are difficult to track and, frankly, full of nonsense. But then Esquire Middle East mixed all three unrelated pieces of content—the story, the video, and the photo—into one big story and ran it for a major audience.

“As John Lennon once said, instant karma is going to get you. That is certainly the case with a story coming out of South Africa, in which a trophy hunter of lions was reportedly found dead after having been eaten by a pride that he had been hunting,” the article reads. “That pride included the brother of one of the great cats he had posed next to in one of his viral Instagram posts after having hunted the animal.”

The article is just a regurgitation of the River City Post article, written in a cleaner, more journalistic fashion. The reader still has no clue who this Instagram user is and no reliable sources have been identified. What Esquire Middle East does differently than the River City Post comes a little later in the piece.

“Another [Twitter] user shared a video of the hunter in question apparently after killing the lion whose family allegedly attacked him,” the article reads. “As this is graphic, viewer discretion is advised.”

After being introduced as a “video of the hunter in question,” the Viral Experiment video is embedded in the article’s next paragraph, leading the reader to believe that not only is the story’s fact pattern correct, but it was all caught on camera. Seven years after being released, this fake, staged video once again does exactly what it was originally intended to do: fool the world.

Esquire Middle East shared their article on a few of their own social media pages, where it got practically zero attention. But make no mistake: this piece still worked its way around the Internet, since lots of social media users posted it on their own.

Multiple fact-checking websites debunked the video and River City Post article, including Snopes and MandyNews, a Nigerian fact-checking news site. If you’re the type to judge a book by its cover, maybe you don’t believe anything news sites like the River City Post say in the first place.

Why Does This Matter?

In 2016, the Pew Research Center conducted a study on misinformation in the news. They found that 23 percent of surveyed American adults say they have “shared a made-up news story.” The article goes further to say 14 percent reported sharing “a story they knew was fake at the time” while 16 percent “shared a story they later realized was fake.”

The larger point here is that misinformation can be stitched together from the most fractured reaches of the Internet. A video from Australia, photos from Africa, and a storyline from wherever River City is all came together to create a faulty article on a major website. It all started with a verified Twitter user named Fight Haven, who is supposedly from Florida. Now, Twitter users from all over the world are perpetuating a false story as part of the larger debate over lion hunting.

Ultimately, Esquire Middle East covered their backsides from any real consequences for this piece. They used words like “allegedly,” “apparently,” and “reportedly.” They attributed all information to the River City Post article. And at the very end of the piece, they caveat the entire story with: “Others doubted the veracity of the story, we will keep you posted if the report turns out to be false.”

The post The bizarre story behind a viral man-eating lion hoax appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Biden’s recent climate decisions will close mines, protect salmon, and may permit drilling in Alaska https://www.popsci.com/environment/biden-environment-polcy/ Thu, 02 Feb 2023 17:30:00 +0000 https://www.popsci.com/?p=509329
Three fishers fish for salmon in Alaska.
Anglers fish for sockeye salmon along the rapids of the Newwhalen River near Iliamna, Alaska on July 23, 2019. Local residents say their entire ecosystem revolves around sockeye salmon, which nourish people, animals and plant life all along the headwaters and tributaries of Bristol Bay. They fear that tailings from the proposed Pebble Mine could pollute the environment. Luis Sinco/Los Angeles Times via Getty Images

More land is being protected, but more fossil fuels could also be on the horizon.

The post Biden’s recent climate decisions will close mines, protect salmon, and may permit drilling in Alaska appeared first on Popular Science.

]]>
Three fishers fish for salmon in Alaska.
Anglers fish for sockeye salmon along the rapids of the Newwhalen River near Iliamna, Alaska on July 23, 2019. Local residents say their entire ecosystem revolves around sockeye salmon, which nourish people, animals and plant life all along the headwaters and tributaries of Bristol Bay. They fear that tailings from the proposed Pebble Mine could pollute the environment. Luis Sinco/Los Angeles Times via Getty Images

It’s been a busy few weeks for environmental policy from the Biden Administration. Protections for multiple ecosystems, like forests, bays, and watersheds, were put into motion in the past few weeks. However, it isn’t all good news—some developments could lead to the possibility of more oil drilling in Alaska. Here’s the good and bad news from sustainability, conservation, and energy policy coming out of the White House in the past week.

USDA moves to protect Tongass National Forest

On January 25, the United States Department of Agriculture (USDA) finalized protections for Tongass National Forest in southeastern Alaska. The forest is currently the world’s largest intact temperate rainforest. The USDA’S final rule repeals the 2020 Roadless Rule, banning logging and road construction on 9.37 million acres of public land. 

[Related: Under a new policy, federal agencies will have to weigh the climate costs of their actions.]

“As our nation’s largest national forest and the largest intact temperate rainforest in the world, the Tongass National Forest is key to conserving biodiversity and addressing the climate crisis,” Agriculture Secretary Tom Vilsack said in a statement. “Restoring roadless protections listens to the voices of Tribal Nations and the people of Southeast Alaska while recognizing the importance of fishing and tourism to the region’s economy.”

This protected area is called a “roadless area” and is home to not only a hunting and fishing wilderness, but old-growth timber and minerals that are sought after by mining companies. These resources are invaluable to Alaska’s economy and livelihood.

“The Tongass National Forest has provided for the people of this land since time immemorial and in many ways, the forest is the lungs of the world,” Gloria Burns, Vice President of the  Ketchikan Indian Community Tribal Council, said in a statement. “The reinstatement of the Roadless Rule is an important step. I come from a family of weavers and we rely culturally, spiritually, and economically on a thriving and healthy old growth forest.”

Department of the Interior curbs the future of Twin Metals Mine 

On January 26, Interior Secretary Deb Haaland signed an order that closed 35 square miles of the Superior National Forest in northeastern Minnesota to any mineral and geothermal leasing for 20 years. Two decades is the longest period of time that the department can sequester the land without approval from Congress. The move aims to protect the Boundary Waters Canoe Area Wilderness and surrounding watershed.

“The Department of the Interior takes seriously our obligations to steward public lands and waters on behalf of all Americans. Protecting a place like Boundary Waters is key to supporting the health of the watershed and its surrounding wildlife, upholding our Tribal trust and treaty responsibilities, and boosting the local recreation economy,” Haaland said in a statement. “With an eye toward protecting this special place for future generations, I have made this decision using the best-available science and extensive public input.”

[Related: What Indigenous fire practices can teach us about saving Southwestern lands.]

The Twin Metals Mine is a proposed underground copper, nickel, and other mineral mine that would be built southeast of Ely, Minnesota near Birch Lake by mining company Twin Metals Minnesota. Birch Lake flows into the Boundary Waters. In a statement, Twin Metals Minnesota said it is disappointed in the decision and remains “ committed to enforcing Twin Metals’ rights.”

EPA moves to block Pebble Mine 

On January 31, the Environmental Protection Agency (EPA) announced that it is blocking the Pebble Mine project.   The controversial gold and copper mining project was to be located at the headwaters of Bristol Bay in southwestern Alaska. Since the project’s inception in 2005, the giant open pit mine has been a major environmental concern from local indigenous groups and environmentalists, due to its proximity to a world-famous salmon fishery and numerous fears that mining activity would devastate the region.

The EPA invoked a rarely used “veto authority” under the Clean Water Act in order to “protect the most productive salmon fishery in the world.” This is only the 14th time in the history of the Clean Water Act that a federal agency has done this. 

The region is home to abundant salmon runs that provide crucial food to Indigenous Alaskans of Bristol Bay including the Dena’ina, Yup’ik, and Alutiiq tribes. This watershed supports all five species of Pacific salmon found in North America (sockeye, coho, Chinook, chum, and pink).

In a recent interview with High Country News, Alana Hurley, a Yup’ik commercial and subsistence fisher based out of Dillingham, Alaska said “for our people, from an Indigenous perspective, just knowing that this threat isn’t hanging over us any longer is so liberating. In terms of being able to refocus our energy into all these other areas that need our focus, and our hearts and minds to be attuned to, [this] is going to be huge. It’s a new day for us.”

Executives at Northern Dynasty Minerals, Ltd’s Pebble Partnership said that they would continue to fight the move, claiming that the EPA “continues to ignore fair and due process in favor of politics.” 

More oil drilling could be coming to Alaska

On February 1, the Interior Department’s Bureau of Land Management (BOEM) advanced the Willow oil drilling project. The controversial project on the National Petroleum Reserve in Alaska is an $8 billion oil drilling project by ConocoPhillips, Alaska’s largest crude oil producer,. The project is favored by some in Alaska’s Congressional delegation for job creation and domestic energy production.

The Interior Department estimates that the project would produce 629 million barrels of oil over the three decades, releasing around 278 million metric tons of carbon emissions. According to the Center for American Progress, that’s equivalent to what 76 coal-fired power plants produce every year.

[Related: What successful forest restoration looks like.]

BOEM’s final supplemental environmental impact statement (SEIS) recommends a slightly smaller version of the five sites proposed by ConocoPhillips, with three drilling sites recommended. The department also recommends other measures to lower pollution and a smaller road and pipeline footprint. 

In a statement, the Interior department said the department “has substantial concerns about the Willow project and the preferred alternative as presented in the final SEIS, including direct and indirect greenhouse gas emissions and impacts to wildlife and Alaska Native subsistence.”

This analysis is the Willow project’s last regulatory hurdle before the federal government can make a final ruling on whether to approve it. The Biden administration has 30 days to issue their final decision.

The post Biden’s recent climate decisions will close mines, protect salmon, and may permit drilling in Alaska appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The best way to save forests? Legally recognize Indigenous lands. https://www.popsci.com/environment/indigenous-land-forest/ Thu, 02 Feb 2023 02:00:00 +0000 https://www.popsci.com/?p=509147
For generations, Indigenous communities in the Atlantic Forest have sought territorial rights to fight extractive industries and land grabbers.
For generations, Indigenous communities in the Atlantic Forest have sought territorial rights to fight extractive industries and land grabbers. DepositPhotos

A new report says the key to saving Brazil’s Atlantic Forest is recognizing Indigenous territory.

The post The best way to save forests? Legally recognize Indigenous lands. appeared first on Popular Science.

]]>
For generations, Indigenous communities in the Atlantic Forest have sought territorial rights to fight extractive industries and land grabbers.
For generations, Indigenous communities in the Atlantic Forest have sought territorial rights to fight extractive industries and land grabbers. DepositPhotos

This story was originally published by Grist. You can subscribe to its weekly newsletter here.

Recognizing and demarcating Indigenous lands leads to reduced deforestation and increased reforestation. That’s according to a new study that looked at more than 100 Indigenous territories in Brazil’s Atlantic Forest and found that legal recognition of those lands can have real, and measurable, impacts on centuries of deforestation.

“Our study contributes to an emerging body of evidence suggesting that rights-based policy for Indigenous lands can improve environmental outcomes,” said Marcelo Rauber, a co-author of the paper and researcher at the National Museum of the Federal University of Rio de Janeiro. “Known in Brazil as demarcação, the legal recognition of Indigenous peoples’ land rights provides Indigenous peoples with territorial autonomy, which support efforts to address longstanding human rights violations, land grabs, biodiversity loss and climate change.”

The Atlantic Forest stretches along Brazil’s Atlantic coast into Paraguay, Uruguay, and Argentina and once covered over 1 million square kilometers. Due to hundreds of years of deforestation, the Atlantic Forest has been reduced to less-than a tenth of its original size — a fragmented collection of forest spread across nearly 200 Indigenous territories, most of which do not have legal recognition, and urban areas, including Rio de Janeiro. 

The SOS Mata Atlântica Foundation, an organization working to restore the forest, says what remains of the Atlantic is home to more than 20,000 species — 6,000 of which do not live anywhere else in the world — and contains nearly 25 percent of all threatened species in Brazil. It is also a key source of water for cities and communities nearby but has been deforested at a much higher rate than the Amazon.

Researchers found that formalized land tenure and territorial recognition was necessary for improved forest outcomes; however, most Indigenous land in Brazil lacks that legal status. Since 2012, only one territory in the Atlantic Forest’s study sample has been granted demarcation status, and while many communities have begun the process, official recognition has been slow. According to the study, that has a real impact on forest health.

For years, researchers and activists have been alarmed by former president Jair Bolsonaro’s policies, which led to a steep deterioration of environmental and Indigenous rights. Bolsonaro, who pledged not to demarcate any Indigenous land, removed environmental protections and encouraged agribusiness development that led to both murders of Indigenous land defenders and high deforestation rates. In 2020, for example, deforestation in the Atlantic Forest increased by 30 percent. “Demarcation is important, because it is not only a social issue, but also a spiritual, traditional, and cultural issue,” said Jurandir Karai Djekupe, a Guarani Mbya leader from the north of São Paulo. “It’s something that encompasses everything.”

For generations, Indigenous communities in the Atlantic Forest have sought territorial rights to fight extractive industries and land grabbers. Now, under Brazil’s new president, Luiz Inácio Lula da Silva, Indigenous communities say they may finally gain access to the legal tools necessary to protect their land, rights, and the environment. Since taking office, Lula’s administration has begun reversing many of Bolsonaro’s policies

Rayna Benzeev, the study’s lead author, says the government must now ensure that the government agency responsible for Indigenous land, FUNAI, has the resources and political support to demarcate and protect Indigenous land throughout the country. “The new administration has an opportunity to turn this trend around by upholding the Brazilian constitution and granting Indigenous peoples with territorial autonomy and self-determination rights,” Benzeev said. 

However, Jerá Poty Miriam, who is a Guarani Mbya leader from the Tenondé Porã territory, says while Indigenous communities are hopeful the new administration will keep its promises, they are committed to holding Lula accountable.

“Protecting our territory means protecting our own life because we depend on it,” said Jerá Poty Mirim. “The demarcation guarantees the continuity of those cultures that respect and protect nature.”

The post The best way to save forests? Legally recognize Indigenous lands. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Gnarly pink waves crash near San Diego https://www.popsci.com/environment/pink-waves-ocean/ Mon, 30 Jan 2023 18:00:00 +0000 https://www.popsci.com/?p=508567
A pink wave curs in the Pacific Ocean.
Pink waves at Torrey Pines State Beach on January 20, 2023. Erik Jepsen/UC San Diego

But don’t panic. It’s for a study on how freshwater and the surfzone interact.

The post Gnarly pink waves crash near San Diego appeared first on Popular Science.

]]>
A pink wave curs in the Pacific Ocean.
Pink waves at Torrey Pines State Beach on January 20, 2023. Erik Jepsen/UC San Diego

The water off the coast of San Diego, California has been looking a bit like something out of a Lisa Frank illustration. Don’t worry, it is all in the name of science. 

Researchers from the University of California, San Diego’s Scripps Institution of Oceanography and the University of Washington are working on an experiment aptly titled PiNC, or Plumes in Nearshore Conditions, that is using pink dye to investigate how small freshwater outflows interact with the surfzone.

[Related: Humans are altering Earth’s tides, and not just through climate change.]

The first of three planned dye releases began on January 20 and the remaining releases are planned for late January and early February.

The project is focused on the estuary and surrounding coastline at Los Peñasquitos Lagoon. Three streams (Carroll Creek, Carmel Creek and Los Peñasquitos Creek) feed into the lagoon, which feeds into the Pacific Ocean. Estuaries and rivers play an important part in delivering freshwater in addition to sediments and contaminants to the coastal ocean. 

By releasing an environmentally safe pink dye into the mouth of the estuary, the PiNC research team is able to track what happens when small-scale plumes of more buoyant freshwater meet the denser, more salty, and often colder environment and breaking waves (or surfzone). 

“I’m excited because this research hasn’t been done before and it’s a really unique experiment,” said Scripps coastal oceanographer Sarah Giddings, who is leading the PiNC study, in a statement. “We’re bringing together a lot of different people with different expertise, such that I think it’s going to have some really great results and impacts. We will combine results from this experiment with an older field study and computer models that will allow us to make progress on understanding how these plumes spread.” 

Drones, a jet ski equipped with a fluorometer (which measures the fluorescence or light emitted from the dye), and sensors are tracking the movement of the fluorescent pink dye. Several moorings and sensors are beyond the breaking waves and along the seafloor to measure the ocean’s currents and conditions (water temperature, tide, salinity, etc.).

[Related: Some rivers suddenly change course, and we may finally know why.]

The team says that the PiNC experiment will provide a first-ever view of the buoyant plume and wave mixing dynamics that are at play and aim to improve understanding of how ocean waves interact with small-to-moderate outflows of freshwater. The data from this study can then help quantify the spread of sediment, pollutants, larvae, and other important material.

Ocean photo
Pink waves at Torrey Pines State Beach on January 20, 2023. CREDIT: Erik Jepsen/UC San Diego

This specific site was chosen because it is a “prime example” of what happens when a small river plume discharges material  into the surfzone along a relatively uniform stretch of coastline

“Los Peñasquitos Lagoon is a very dynamic system, with different elements changing each day, often even over the course of one day,” said Alex Simpson, a Scripps postdoctoral scholar and member of the research team, in a statement. “I am looking forward to seeing how the balance of physical forces—ocean waves competing against river outflow—determine the fate of the estuary water as it enters the coastal ocean on the days that we conduct our field experiment.”

The dye releases occur at a point in the tide cycle when the water level is falling called an ebb tide. This ensures that the dye is carried out of the estuary and into the coastal ocean. The pink dye can be seen by the naked eye for several hours after the deployment. While the dye doesn’t pose a threat to the environment, beachgoers are advised to swim in areas further south or north of the estuary on the days that the dye is released due to the active research. 

The post Gnarly pink waves crash near San Diego appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
When wolves hunt otters on this Alaskan island, deer suffer https://www.popsci.com/environment/sea-otter-wolves-alaska/ Fri, 27 Jan 2023 23:00:00 +0000 https://www.popsci.com/?p=508119
In Alaska, coastal wolves will happily chow down on sea otters—a dietary flexibility with broad ecological ramifications.
In Alaska, coastal wolves will happily chow down on sea otters—a dietary flexibility with broad ecological ramifications. DepositPhotos

On Pleasant Island, Alaska, wolves are feasting on sea otters. What that means for the ecosystem is unclear.

The post When wolves hunt otters on this Alaskan island, deer suffer appeared first on Popular Science.

]]>
In Alaska, coastal wolves will happily chow down on sea otters—a dietary flexibility with broad ecological ramifications.
In Alaska, coastal wolves will happily chow down on sea otters—a dietary flexibility with broad ecological ramifications. DepositPhotos

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

Gretchen Roffler recalls looking out on the waterfront in Alaska’s Katmai National Park and Preserve as three wolves came into view, then disappeared behind some rocks. When the predators returned, all three were gripping the same limp sea otter between their jaws. Working together, the wolves tore the otter to pieces. “It was like a tug of war,” says Roffler, a wildlife biologist with the Alaska Department of Fish and Game.

Roffler and her colleagues paid close attention; they needed to document the June 2021 event in detail. After all, Roffler believes, this was “one of the first observations of wolves killing sea otters.”

Sea otters were extirpated from Alaska in 1830, but their reintroduction over the past few decades has been highly successful. The marine mammal’s resurgence means that in Alaska sea otters and wolves are now inhabiting the same environments for the first time in the modern scientific record. This meeting of historical predator and prey is having important consequences—especially for the region’s deer.

Scientists tend to think that a wolf population’s size is dictated by the availability of ungulate prey like deer and moose. But on the Alaska coast, scientists like Roffler are increasingly documenting cases of coastal wolves munching on marine mammals. In fact, on Pleasant Island, near Glacier Bay National Park and Preserve, Roffler and her colleagues’ analysis of wolf scat has shown that the local wolves have almost entirely switched their diet from deer to sea otters.

Rather than the wolves leaving the deer alone, though, Roffler says that this new source of nutrients has kept the wolf population so healthy that it has wiped out the region’s deer.

By fixing Alaska coastal wolves with GPS collars to see where they were traveling and hunting, and by analyzing wolf scat and hair samples collected between 2015 and 2021, Roffler and her colleagues retraced the changes that have taken place.

Their research shows that sea otters first recolonized the area around Pleasant Island in the early 2000s, while wolves landed on the island in 2013. The deer population crashed in 2015, and by 2016 the wolves were mostly eating sea otters.

While wolves scavenging the occasional sea otter may not be unexpected, Roffler says it’s surprising that a pack could completely switch its diet and continue to maintain a healthy population on a small island devoid of deer. “We assumed what would happen is that the wolves would eat a lot of deer and potentially deplete the population, and then the wolves would either die off or leave,” she says.

The scientists are curious how common this kind of prey switching has been in other areas along the coast where sea otters have also rebounded. They’re also interested in how wolves learn to hunt sea otters—and whether it might be a behavior that can catch on between wolf packs.

So far, Roffler says it is too soon to predict whether wolf populations growing fat on sea otters could spell trouble for deer elsewhere as it has on Pleasant Island, but they suspect it would only have a similar effect on other relatively isolated small islands where wolves have easy access to sea otters.

Chris Darimont, a conservation biologist from the Raincoast Conservation Foundation who was not involved in the study, says that as well as helping us understand how the ecosystem is changing, this kind of work also offers a window into history—before the sea otters were wiped out by hunters. “In a way, we’re having a glimpse into the past by studying something that’s recovering now.”

This article first appeared in Hakai Magazine and is republished here with permission.

The post When wolves hunt otters on this Alaskan island, deer suffer appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A chunk of ice twice the size of New York City broke off the Brunt Ice Shelf https://www.popsci.com/environment/antarctica-brunt-ice-shelf-iceberg/ Thu, 26 Jan 2023 15:00:00 +0000 https://www.popsci.com/?p=507927
An aerial view of Chasm-1, a crack in Antarctica's Brunt Ice Sheet.
Chasm-1 on Antarctica's Brunt Ice Sheet remained dormant for many years, but has now created a new iceberg. BAS

The Antarctic event is not connected to climate change.

The post A chunk of ice twice the size of New York City broke off the Brunt Ice Shelf appeared first on Popular Science.

]]>
An aerial view of Chasm-1, a crack in Antarctica's Brunt Ice Sheet.
Chasm-1 on Antarctica's Brunt Ice Sheet remained dormant for many years, but has now created a new iceberg. BAS

There’s a new rogue iceberg floating around Antarctica. The almost 600 square-mile iceberg broke off of the Brunt Ice Shelf on January 22, according to scientists at British Antarctic Survey (BAS). Researchers at BAS’ Halley Research Station have been tracking the ice shelf’s behavior for several years.

The Brunt Ice Shelf itself is close to 500 feet thick. It “calved” when a crack called Chasm-1 that has naturally been developing over the last few years extended across the whole shelf, causing the new iceberg to break free. 

[Related: An East Antarctic ice shelf has collapsed.]

“This calving event has been expected and is part of the natural behaviour of the Brunt Ice Shelf. It is not linked to climate change,” said Dominic Hodgson, a glaciologist with BAS, in a statement. “Our science and operational teams continue to monitor the ice shelf in real-time to ensure it is safe, and to maintain the delivery of the science we undertake at Halley”. 

While the area of the ice shelf that houses the research station is unaffected by recent calving events, Brunt has a complex geological structure and the impact of calving events remain unpredictable.

The first signs of changes in Chasm-1 were spotted by satellites in 2012. It began to widen, and the BAS moved Halley Research Station 14 miles inland in 2016. By the following year, BAS began only deploying staff to the station from November to March (Antarctic summer) the following year.

“Our glaciologists and operations teams have been anticipating this event. Measurements of the ice shelf are carried out multiple times a day using an automated network of high-precision GPS instruments that surround the station,” said BAS Director Jane Francis, in a statement. “These measure how the ice shelf is deforming and moving, and are compared to satellite images from ESA, NASA, and the German satellite TerraSAR-X. All data are sent back to Cambridge for analysis, so we know what is happening even in the Antarctic winter – when there are no staff on the station, it is dark for 24 hours, and the temperature falls below minus 50 degrees C (or -58F).”

[Related: Giant ice cracks in Antarctica stymie important research for the second winter in a row.]

BAS says the changes in the Brunt Ice Shelf are a natural process and that there isn’t any connection to recent rapid calving events on Larsen C Ice Shelf. This shelf had extensive surface meltwater when an iceberg the size of Luxembourg broke off of the ice shelf in 2017, but still no evidence that climate change has played a significant role. 

Ted Scambos, a senior research scientist at the University of Colorado at Boulder, told The Washington Post that while the iceberg “is a huge mass of ice, about 500 billion tons … it is far from being the largest iceberg ever seen, which rivaled Long Island. These large iceberg calvings, sometimes as large as a small state, are spectacular. But they’re just part of how Antarctica’s ice sheet works. Most of the time they have nothing to do with climate change.”

Currently, BAS has 21 staff at the station who will maintain power supplies and facilities until February 6.

The post A chunk of ice twice the size of New York City broke off the Brunt Ice Shelf appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
When wind turbines kill bats and birds, these scientists want the carcasses https://www.popsci.com/environment/birds-bats-renewables/ Wed, 25 Jan 2023 02:00:00 +0000 https://www.popsci.com/?p=507399
A red-tailed hawk takes off from an idle turbine blade in near Livermore, California, in 2013.
A red-tailed hawk takes off from an idle turbine blade in near Livermore, California, in 2013. Michael Macor/The San Francisco Chronicle via Getty Images

Collecting, studying, and storing the remains from wind and solar facilities, scientists say, can unlock new insights.

The post When wind turbines kill bats and birds, these scientists want the carcasses appeared first on Popular Science.

]]>
A red-tailed hawk takes off from an idle turbine blade in near Livermore, California, in 2013.
A red-tailed hawk takes off from an idle turbine blade in near Livermore, California, in 2013. Michael Macor/The San Francisco Chronicle via Getty Images

This article was originally featured on Undark.

“This is one of the least smelly carcasses,” said Todd Katzner, peering over his lab manager’s shoulder as she sliced a bit of flesh from a dead pigeon lying on a steel lab table. The specimens that arrive at this facility in Boise, Idaho, are often long dead, and the bodies smell, he said, like “nothing that you can easily describe, other than yuck.”

A wildlife biologist with the U.S. Geological Survey, a government agency dedicated to environmental science, Katzner watched as his lab manager rooted around for the pigeon’s liver and then placed a glossy maroon piece of it in a small plastic bag labeled with a biohazard symbol. The pigeon is a demonstration specimen, but samples, including flesh and liver, are ordinarily frozen, catalogued, and stored in freezers. The feathers get tucked in paper envelopes and organized in filing boxes; the rest of the carcass is discarded. When needed for research, the stored samples can be processed and sent to other labs that test for toxicants or conduct genetic analysis.

 

Most of the bird carcasses that arrive at the Boise lab have been shipped from renewable energy facilities, where hundreds of thousands of winged creatures die each year in collisions with turbine blades and other equipment. Clean energy projects are essential for confronting climate change, said Mark Davis, a conservation biologist at the University of Illinois at Urbana-Champaign. But he also emphasized the importance of mitigating their effects on wildlife. “I’m supportive of renewable energy developments. I’m also supportive of doing our best to conserve biodiversity,” Davis said. “And I think the two things can very much coexist.”

To this end, Katzner, Davis, and other biologists are working with the renewable energy industry to create a nationwide repository of dead birds and bats killed at wind and solar facilities. The bodies hold clues about how the animals lived and died, and could help scientists and project operators understand how to reduce the environmental impact of clean energy installations, Davis said.

The repository needs sustained funding and support from industry partners to supply the specimens. But the collection’s wider potential is vast, Davis added. He, Katzner, and other stakeholders hope the carcasses will offer a wide array of wildlife biologists access to the animal samples they need for their work, and perhaps even provide insights into future scientific questions that researchers haven’t thought yet to ask.


In 1980, California laid the groundwork for one of the world’s first large-scale wind projects when it designated more than 30,000 acres east of San Francisco for wind development, on a stretch of land called the Altamont Pass. Within two decades, companies had installed thousands of wind turbines there. But there was a downside: While the sea breeze made Altamont ideal for wind energy, the area was also well-used by nesting birds. Research suggested they were colliding with the turbines’ rotating blades, leading to hundreds of deaths among red-tailed hawks, kestrels, and golden eagles.

“It’s a great place for a wind farm, but it’s also a really bad place for a wind farm,” said Albert Lopez, planning director for Alameda County, where many of the projects are located.

A 2004 report prepared for the state estimated deaths and offered recommendations that the authors said could add up to mortality reductions of anywhere from 20 to 50 percent. The most effective solution, the authors argued, involved replacing Altamont’s many small turbines with fewer larger turbines. But, the authors wrote, many measures to reduce deaths would be experimental, “due to the degree of uncertainty in their likely effectiveness.” More than a decade of research, tensions, and litigation followed, focused on how to reduce fatalities while still producing clean electricity to help California meet its increasingly ambitious climate goals.

While all this was happening, Katzner was earning his Ph.D. by studying eagles and other birds — and beginning to amass a feather collection halfway around the world. In Kazakhstan, where he has returned nearly every summer since 1997 to conduct field research, Katzner noticed piles of feathers underneath the birds’ nests. Carrying information about a bird’s age, sex, diet, and more, they were too valuable a resource to just leave behind, he thought, so he collected them. It was the start of what he describes as a compulsion to store and archive potentially useful scientific material.

Katzner went on to co-publish a paper in 2007, in which the researchers conducted a genetic analysis of naturally shed feathers, a technique that could allow scientists to match feather samples with the correct bird species when visual identifications are difficult. He later towed deer carcasses across the East Coast to lure and trap golden eagles in order to track their migration patterns. And today, part of his research involves testing carcasses for lead and other chemicals to understand whether birds are coming in contact with toxicants.

For the last decade, Katzner has also researched how birds interact with energy installations like wind and solar projects. During this time, studies have estimated that hundreds of thousands of birds die each year at such facilities in the United States. Thats’s still a small fraction of the millions of birds that at least one paper estimated are killed annually due to habitat destruction, downstream climate change, and other impacts of fossil fuel and nuclear power plants. But renewable energy is growing rapidly, and researchers are trying to determine how that continued growth might affect wildlife.

Bats seem attracted to spinning wind turbines, sometimes being struck by the blades while attempting to roost in the towers. Birds sometimes swoop down and crash into photovoltaic solar panels — possibly thinking the glass is water that is safe for landing. A separate, less common solar technology that uses mirrors to concentrate the sun’s rays into heat energy is known to singe birds that fly too close — a factor that has drawn opposition to such facilities from bird activists. But scientists still don’t fully understand these many interactions or their impacts on bird and bat populations, which makes it harder to prevent them.

In 2015, by then on staff at the USGS, Katzner and a team of other scientists secured $1 million from the California Energy Commission to study the impacts of renewable energy on wildlife — using hundreds of carcasses from the Altamont Pass. NextEra Energy, one of the largest project owners there, chipped in a donation of approximately 1,200 carcasses collected from their facilities in Altamont.

The team analyzed 411 birds collected over a decade at Altamont and another 515 picked up during a four-year period at California solar projects. They found that the birds originated from across the U.S., suggesting renewable facilities could affect far away bird populations during their migrations. In early 2021, Katzner and a team of other scientists published a paper examining specimens collected at wind facilities in Southern California. Their results suggested that replacing old turbines with fewer, newer models did not necessarily reduce wildlife mortality. Where a project is sited and the amount of energy it produces are likely stronger determinants of fatality rates, the authors said.

In the Altamont, scientists are still working to understand impacts for birds and bats, with a technical committee created to oversee the work. Ongoing efforts to replace old turbines with newer ones are meant to reduce the number of birds killed there, but whether it’s working remains an open question, said Lopez. Installing fewer turbines that produce more energy per unit than earlier models was expected to provide fewer collision points for birds and more space for habitat. And when new turbines are put in, scientists can recommend spots within a project site where birds may be less likely to run into them. But other variables influence mortality aside from turbine size and spacing, according to the 2021 paper authored by Katzner and other scientists, like season, weather, and bird behavior in the area.

On a small road in the Altamont, a white sign marks an entrance to NextEra’s Golden Hills wind project, where the company recently replaced decades-old turbines with new, larger models. Not far away, another wind project sits dormant — a relic from another time. Its old turbines stand motionless, stocky, and gray next to their graceful, modern successors on the horizon. The hills are quiet except for the static buzz of power cables.

Some conservationists are still concerned about the area. In 2021, the National Audubon Society, which says it strongly supports renewable energy, sued over the approval of a new wind project in the Altamont, asserting that the county didn’t do enough environmental review or mitigation for bird fatalities.

Katzner attributes his work in California with the beginnings of the repository, which he’s dubbed the Renewables-Wildlife Solutions Initiative. Amy Fesnock, a Bureau of Land Management wildlife biologist who collaborates with Katzner, simply calls it the “dead body file.”

In Idaho, Katzner has already amassed more than 80,000 samples — many drawn from the feather collection he’s kept for decades, and thousands more recently shipped in by renewable energy companies and their partners. Ultimately, Katzner would like to see a group of repository locations, all connected by a database. This would allow other scientists to access the bird and bat samples and use them in a variety of ways, extracting their DNA, for example, or running toxicology tests.

“Every time we get an animal carcass, it has value to research,” said Katzner. “If I think about it from a scientific perspective, if you leave that carcass out there in the field, you’re wasting data.”

That data is important to people like Amanda Hale, a biologist who helped build the repository while at Texas Christian University. She is now a senior research biologist at Western Ecosystems Technology, a consulting company that, along with providing other services, surveys for dead wildlife at renewable energy sites. Part of her new role involves liaising with clean energy companies and the government agencies that regulate them, making sure decision makers have the most current science to inform projects. Better data could assist clients in putting together more accurate conservation plans and help agencies know what to look for, she said, making regulation more straightforward.

“Once we can understand patterns of mortality, I think you can be better in designing and implementing mitigation strategies,” said Hale.

The initiative is not without its skeptics, though. John Anderson, executive director of the Energy and Wildlife Action Coalition, a clean energy membership group, sees merit in the effort but worries that the program could be “used to characterize renewable energy impacts in a very unfavorable light” without recognizing its benefits. The wind industry has long been sensitive to suggestions that it’s killing birds.

Several renewable energy companies that Undark contacted for this story did not respond to inquiries about wildlife monitoring at their sites or stopped responding to interview requests. Other industry groups, including the American Clean Power Association and the Renewable Energy Wildlife Institute, declined interview requests. But many companies appear to be participating — in Idaho, Katzner has received birds from 42 states.

 

William Voelker, a member of the Comanche Nation who has led a bird and feather repository called Sia for decades, says he’s frustrated at the lack of consideration for tribes from these types of U.S. government initiatives. Indigenous people, he said, have first right to “species of Indigenous concern.” His repository catalogs and sends bird carcasses and feathers to Indigenous people for ceremonial and religious purposes, and Voelker also cares for eagles.

“At this point we just don’t have any voice in the ring, and it’s unfortunate,” said Voelker.

Katzner, for his part, says he wants the project to be collaborative. The Renewable-Wildlife Solutions Initiative has sent some samples to a repository in Arizona that provides feathers for religious and ceremonial purposes, he said, and the RWSI archive could ship out other materials that it does not archive, but it has not yet contacted other locations to do so.

“It’s a shame if those parts of birds are not being used,” he said. “I’d like to see them get used for science or cultural purposes.” 


Many U.S. wind farms already monitor and collect downed wildlife. At a California wind facility an hour north of Altamont, the Sacramento Municipal Utility District tries to clear out its freezers at least once per year — before the bodies start to smell, said Ammon Rice, a supervisor in the government-owned utility’s environmental services department. The specimens that companies accumulate are often kept until they’re thrown out. Until recently, samples had been available to government and academic researchers on only a piecemeal basis.

There are many reasons why a clean energy company might employ people to pick up dead animals at its facility: Some states require companies to survey sites during certain stages of their development and keep track of how many birds and bats are found dead. Removing the carcasses can also deter scavengers, such as coyotes, foxes, and vultures. And the federal government has set voluntary conservation guidelines for wind projects; for some companies, complying with the recommendations is part of maintaining good political relationships.

Most of the time, human searchers canvas a project, walking transects under turbines or through solar fields. It’s “enormously labor intensive,” said Trevor Peterson, a senior biologist at Stantec, one of the consulting firms often hired to conduct those surveys. On some sites, trained dogs sniff out the dead bodies.

 

For years, conservation biologists have wanted to find a use for the creatures languishing in freezers at clean energy sites around the country. To get a nationwide project off the ground, Katzner started working with two other researchers: Davis, the conservation biologist at University of Illinois, and Amanda Hale, then a biology professor at Texas Christian University. They were part of a small community of people “who pick up dead stuff,” said Katzner. The three started meeting, joined by scientists at the Bureau of Land Management and the U.S. Fish and Wildlife Service, who helped connect the initiative with additional industry partners willing to send carcasses.

Building on Katzner’s existing samples, the repository has grown from an idea to a small program. In the last two years, it received about $650,000 from the Bureau of Land Management and earned a mention in the agency’s recent report to Congress about its progress towards renewable energy growth.

Davis had already been accepting samples from wind facilities when he started working on the repository. Often the bodies are mailed to his laboratory, but he prefers to organize hand-to-hand deliveries when possible, after one ill-fated incident in which a colleague received a shipped box of “bat soup.” To receive deliveries in person, Davis often winds up loitering in the university parking lot, waiting for the other party to arrive so they can offload the cargo.

“It sounds a lot like an illicit drug deal,” said Davis. “It looks a lot like an illicit drug deal — I assure you it is not.”

Recently, Ricky Gieser, a field technician who works with Davis, drove two and a half hours from Illinois to central Indiana to meet an Ohio wildlife official in the parking lot of a Cracker Barrel. Davis arranged for Undark to witness the exchange through Zoom. With latex-gloved hands, Gieser transferred bags of more than 300 frozen birds and bats — lifting them from state-owned coolers and then gingerly placing them into coolers owned by his university. The entire transaction was over in under 15 minutes, but coordinating it took weeks.

Davis studies bats and other “organisms that people don’t like,” with a focus on genetics. He grew up in Iowa chasing spiders and snakes and now stores a jar of pickled rattlesnakes — a souvenir from his doctoral research — on a shelf behind his desk. Protecting these creatures, he said, is of extreme importance. Bats provide significant economic benefit, eating up bugs that harm crops. And their populations are declining at an alarming rate: A disease called white-nose syndrome has wiped out more than 90 percent of the population of three North American bat species in the last decade. In late November of 2022, the U.S. Fish and Wildlife Service listed Davis’s favorite species, the northern long-eared bat, as endangered.

For certain species, deaths at wind facilities are another stressor on populations. Scientists expect climate change to make the situation worse for bats and overall biodiversity. “Because of this confluence of factors, it’s just really tough for bats right now,” said Davis. “We need to work a lot harder than we are to make life better for them.”

Like other wildlife researchers, Davis has sometimes struggled to get his hands on the specimens he needs to track species and understand their behaviors. Many spend time in the field, but that’s costly. Depending on the target species, acquiring enough animals can take years, said Davis. He used museum collections for his doctoral dissertation, and still views them as an “untapped font of research potential.” But museums often focus on keeping samples intact for preservation and future research, so they may not work for every project.

That leaves salvage. Frozen bird and bat carcasses are “invaluable” to scientists, said Fesnock, the BLM wildlife biologist. So far, samples collected as part of the Renewables-Wildlife Solutions Initiative have led to about 10 scientific papers, according to Katzner. Davis says the collection could reduce research costs for some scientists by making a large number of samples available, particularly for species that are hard to collect. It’s difficult for scientists to catch migratory bats that fly high in the air with nets, making it challenging to estimate population levels. Bat biologists say there’s much we still don’t know about their behaviors, range, and number.


As scientists work to compile better data, a few companies are experimenting with mechanization as a possible way to reduce fatalities at their facilities. At a wind farm in Wyoming, utility Duke Energy has installed a rotating camera that resembles R2D2 on stilts. The technology, called IdentiFlight, is designed to use artificial intelligence to identify birds and shut turbines down in seconds to avoid collisions.

Prior to IdentiFlight, technicians used to set up lawn chairs amid the 17,000-acre site and look skyward, sometimes eight hours a day, to track eagles. It was an inefficient system prone to human error, said Tim Hayes, who recently retired as the utility’s environmental development director. IdentiFlight has reduced eagle fatalities there by 80 percent, he added. “It can see 360 degrees, where humans can’t, and it never gets tired, never blinks, and never has to go to the bathroom.”

Biologists say there are still unknowns around the efficacy of these types of technologies, in part because of incomplete data on the population size and spread of winged wildlife.

Katzner and his colleagues want the repository to help change this, but first they will need long term funding to help recruit more partners and staff. Davis estimated he needs between $1 and $2 million to build a sustainable repository at his university alone. Ideally, the USGS portion of the project in Boise would have its own building. For now, Katzner stores feathers in a space that doubles as a USGS conference room. Next door, in a room punctuated with a dull hum, the walls are lined with freezers. Some carry samples already cataloged. Others hold black trash bags filled with bird and bat bodies just waiting to be processed.


This article was originally published on Undark. Read the original article.

Birds photo

The post When wind turbines kill bats and birds, these scientists want the carcasses appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How a peculiar parasitic plant relies on a rare Japanese rabbit https://www.popsci.com/environment/endangered-amami-rabbit-parasitic-plant-seeds/ Mon, 23 Jan 2023 22:00:00 +0000 https://www.popsci.com/?p=507205
a dark furred rabbit with short ears in the brush. the image was taken at night
The Amami rabbit is a rare endangered species native to the Amami Islands of Japan. nobuhiko – stock.adobe.com

Biologists in Japan recorded the endangered rabbits munching on the plant Balanophora yuwanensis, suggesting that the they might be important seed dispersers.

The post How a peculiar parasitic plant relies on a rare Japanese rabbit appeared first on Popular Science.

]]>
a dark furred rabbit with short ears in the brush. the image was taken at night
The Amami rabbit is a rare endangered species native to the Amami Islands of Japan. nobuhiko – stock.adobe.com

On a small chain of islands off the coast of Japan, local biologists found a peculiar bite mark on the Balanophora yuwanensis plant. They guessed that the toothy impression might belong to the Amami rabbit, a wild and dark-furred nocturnal creature named after the Amami Islands. The rabbit evolved separately on the islands, making it genetically distinct from other species in Japan. So the team set up infrared triggered cameras near the B. yuwanensis, a non-photosynthetic plant, and spent 52 days watching which animals eat it. 

Their suspicions were correct: Out of all the animals in the forest, the Amami rabbit feasted on fruit grown on the B. yuwanensis plant the most. The team’s observations were later confirmed when they studied the rabbit’s feces. The paper from Kobe University was published in the journal Ecology on Monday. What’s more, the researchers discovered that the rabbit might be critical to the plant’s survival. After the Amami rabbit eats the fruit, it poops out the seeds, dispersing them throughout the island’s subtropical evergreen forests.

Seed dispersal by animals is particularly important for the B. yuwanensis plant. Although the plant’s seeds are small, they are unlikely to be dispersed through the wind, since the plants grow under the forest canopy which blocks out strong winds, explains Kenji Suetsugu, lead author of the study and a professor at Kobe University.

a Balanophora yuwanensis plant which are red spherical bulbs with puckered little bumps on it. on the right are the plants eaten
Each round mass of Balanophora yuwanensis looks like a single fruit, however, they are composed of several thousand fruits, each measuring approximately 0.3 mm in size. The clusters are composed of numerous red bumps that are not the fruits, but modified leaves that that hide the actual fruits underneath. Yohei Tashiro

The Amami rabbit’s curious role in the plant’s spread is compounded by the fact that B. yuwanensis is no ordinary plant. It has no roots nor leaves, and with its dark reddish-brown color it resembles a strawberry more than the traditional leafy sprout. It cannot photosynthesize, and as a result, acts as a parasite, attaching to the roots of other plants to collect nutrients. And it doesn’t produce fleshy fruit, that have bright colors, juicy textures, and distinct odors which attract seed disperser animals looking for a snack. Instead, the parasitic plant produces dry fruit—but the Amami rabbit still eats it. And after getting their fill of these fruit, the rabbit digs burrows underground where it defecates, which might help place the seeds near the roots of compatible host plants for B. yuwanensis

The latest findings also illustrate the complex relationship between animals and the services they provide to their environments. “The rabbits likely provide a crucial link between [B. yuwanensis] and its hosts,” Suetsugu wrote in an email interview to Popular Science. “Such natural history observations greatly enhance our comprehension of ecosystems.”

Evan Fricke, an ecologist with the University of Maryland who studies seed dispersal, adds that the study highlights the sometimes unexpected roles that species play in maintaining the web of life. “My sense is that there is a growing recognition that more plant species depend on animals for seed dispersal than previously thought, even when they don’t have physical structures like pulp to attract fruit-eating animals or hooks to stick on to animal fur,” Fricke wrote in a statement to PopSci.

The research team’s infrared footage of an Amami rabbit voraciously feeds on a non-photosynthetic plant. Credit: Kenji Suetsugu

Locals have tried to protect the Amami rabbit, which many consider a cultural symbol of the islands, Suetsugu says. In recent years, the rabbit has also been used to promote tourism. But increasing habitat destruction on the Amami Islands have left both the Amami rabbit and the B. yuwanensis plant endangered, Suetsugu says. The government has made some efforts to protect the species from extinction, including hunting the rabbit’s predators, mongooses and wildcats, which have yielded some positive results.

Still, scientists have yet to discover all the services endangered animals might provide to their ecosystems, Suetsugu says. Their diminishing population sizes, or extinction, could significantly impact how ecosystems function.

“Many endangered species have not been studied extensively and their full ecological importance may not be known yet,” Suetsugu wrote. “For example, endangered species can play important roles as pollinators, seed dispersers, predators, or prey. They can also help to maintain the balance of an ecosystem by controlling the populations of other species.”

[Related: The curious case of an endangered wildcat and a disappearing fruit tree]

Scientists are still trying to understand the roles of endangered animals within their ecosystems, including with seed dispersal, explains Therese Lamperty, a postdoctoral fellow at the University of Washington, in a statement to PopSci. The study details a compelling example of pursuing a subtle field observation to make a novel finding, she says. 

“Because many endangered animals share common traits such as large body sizes, they tend to be species that also perform unique or relatively impactful roles in their ecosystems,” Lamperty wrote. “But because existing data is limited, we cannot say this with certainty and more research is needed.”

Suetsugu says the unknown functions of endangered species should be considered when governments make conservation policies. Understanding the roles endangered species play can help conservation managers more effectively protect and restore habitats, control invasive species, and reduce other threats, he says.

“Protecting endangered species not only helps to preserve biodiversity, but it can also have important benefits for human well-being,” says Suetsugu.

The post How a peculiar parasitic plant relies on a rare Japanese rabbit appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Plastic, pollution, and prescription drugs are making fish act erratically https://www.popsci.com/environment/pollution-fish-behavior/ Fri, 20 Jan 2023 23:00:00 +0000 https://www.popsci.com/?p=506598
Plastics, drugs, and more may change how fish socialize or take risks, although the specifics are difficult to pinpoint.
Plastics, drugs, and more may change how fish socialize or take risks, although the specifics are difficult to pinpoint. Getty Images

Human waste may change how fish socialize or take risks, although the specifics are difficult to pinpoint.

The post Plastic, pollution, and prescription drugs are making fish act erratically appeared first on Popular Science.

]]>
Plastics, drugs, and more may change how fish socialize or take risks, although the specifics are difficult to pinpoint.
Plastics, drugs, and more may change how fish socialize or take risks, although the specifics are difficult to pinpoint. Getty Images

This article was originally featured on Undark.

The world’s aquatic habitats are a heady brew of pollutants. An estimated 14 million tons of plastic enter the ocean as trash each year. Further inland, more than 40 percent of the world’s rivers contain a pharmacopeia from humans, including antidepressants and painkillers. Heavy metals like mercury from industrial waste can also make an appearance. And agricultural fertilizer can leach from the soil into rivers, eventually reaching the ocean.

There are an estimated 20,000 species of fish in the world — and possibly many more. They and many other organisms that live in “contaminated systems are contaminated with a cocktail of chemicals,” said Michael Bertram, a behavioral ecologist at the Swedish University of Agricultural Studies.

Bertram and other researchers are increasingly finding that these compounds may alter fish behavior. In some experiments, the pollutants appear to alter how fish socialize, either by exposing them to psychoactive drugs or by altering their natural development, which may change how they swim together and mate. Others appear to make fish take more risks which, in the wild, could increase their odds of getting unceremoniously taken out by predators.

The effects of the pollution, according to researchers working in the field, still have many unknowns. This is due in part to the vast number of variables in real ecosystems, which can limit scientists’ abilities to infer how pollutants impact fish in the wild, said Quentin Petitjean, a postdoctoral researcher in environmental sciences at Institut Sophia Agrobiotech in France, and co-author of a 2020 paper that looked at existing literature on pollution and fish behavior. “In the wild, fish and other organisms are exposed to a plethora of stressors,” he said.

Still, these altered behaviors could have big impacts, according to Bertram. Like many living things, fish are important parts of their ecosystems, and changing their behavior could hinder or alter their roles in unexpected ways. For instance one study suggests that various chemical pollutants and microplastics can impact the boldness of prey fish species. Although the authors note that this isn’t likely to lead to population collapse, these “subtle behavior modifications” could reduce fish biomass, alter their size, and ultimately harm predators as well. Just this one effect, they add, “may be a hidden mechanism behind ecosystem structure changes in both freshwater and marine ecosystems.”


But humans have a funny way of showing their appreciation. One example: People regularly flush psychoactive substances, which then find their way into aquatic ecosystems. In 2021, Bertram and a team of researchers published a paper digging into how a common antidepressant, fluoxetine, better known under the brand name Prozac, affected guppies’ propensity for shoaling, or swimming in groups. Over two years, the team exposed groups of guppies to different concentrations of fluoxetine: a low concentration (commonly seen in the wild), a high concentration (representative of an extremely contaminated ecosystem), and no fluoxetine at all.

At the high exposure concentration, the guppies appeared to be more social, spending more time shoaling. However, this was only the case in of male-female pairs, not when the fish swam solo. Previous research by Bertram and colleagues shows that the medication increases the amount of time guppy males spend pursuing females. “Being intensely courted” by males, Bertram said, the females will preferentially choose the larger school to distract them and “to avoid this incessant mating behavior.”

While drugs like Prozac are designed to change brain function, there are other, perhaps less obvious ways pollution can change behavior. For instance, pollutants may alter the microbiome, the collection of microscopic organisms like fungi and bacteria that exist on or in an organism. In humans, disruptions of microbial life have been linked to disorders such as autism spectrum disorder, dementia, or even simply cognitive impairment. Research published in 2022 suggests that fish brains may also rely on the collection of minuscule organisms.

In the study, researchers worked with two groups of zebrafish embryos that they had rendered germ-free, functionally stripping them of microbes. Into the containers holding one group of embryos, the team immediately introduced water from a tank with full-grown zebrafish to give the disinfected population a microbiome. After a week, they did the same for the other group.

After yet another week, the researchers ran a series of experiments, putting two fish from the same group in neighboring tanks to see if they would swim alongside each other, a shoaling behavior previously identified.

The fish deprived of an early life microbiome spent much less time doing this behavior than those in the control group. Of the 54 control fish, nearly 80 percent spent their time near the divider between the tanks, compared to around 65 percent of the 67 in the other group. Exposure to microbes early in life is important for the development of social behavior, said Judith Eisen, a neuroscientist and one of the paper’s authors.

The researchers also looked at the brains of the fish using powerful microscopes. Normally, cells called microglia move from the gut to the brain early in the fishes’ lives, Eisen said, around the time their microbiome starts to develop. The fish that lived without microbiomes for a week, she and the team found, had fewer microglia in a particular brain region which has been previously linked to the shoaling behavior. In normal brains (including human ones), these cells perform synaptic pruning, which clears away weaker or less used connections.

Of course, the germ-free state of those zebrafish, Eisen said, would not exist in nature. However, some human pollutants like pesticides, microplastics, and metals like cadmium appear to alter fish microbiomes. Considering shoaling is often a protective behavior, a diminished shoaling response may cause problems in the wild. “If it doesn’t want to hang out with other fish — that might open it up to predation,” Eisen said.

An example of shoaling behavior in two zebrafish. The fish, which are placed in separate tanks, swim alongside each other and orient their bodies in a regular pattern when introduced for the first time.
Visual: University of Oregon/YouTube

Pollutants can impact behavior beyond shoaling, and saltwater ecosystems as well. In a 2020 study, researchers took Ambon damselfish larvae back to the lab and exposed some of them to microplastic beads. Then, they returned the young fish to different stretches of the Great Barrier reef — some of which were degraded and others that were still healthy — and observed how they acted. The team had also tagged the fish with tiny fluorescent tags, and returned to the reef several times over three days to check on their survival rate.

The fish that had been exposed to microplastics showed more risk-taking behavior and survived for less time before being preyed upon, according to the study. Nearly all the tagged fish that were exposed to microplastics and set free near dead reefs died after around 50 hours. Meanwhile, around 70 percent of unexposed fish released near living reefs survived past the 72-hour mark. According to the paper, while the health of the reef was a factor in risk behavior, fish exposed to the plastics had a survival rate six times lower than those not exposed to the compounds.

According to Alexandra Gulizia, one of the paper’s authors and a Ph.D. student at James Cook University, there needs to be more work looking into the components of plastics and how they affect fish. For instance, bisphenol-A, more commonly known as BPA, is a common additive to make plastics more flexible. It also appears in natural habitats and research suggests it can decrease aggression in fish. Gulizia added: “I think that we’re only just touching the surface of the chemical impacts that microplastics are having on fish and fish behavior.”


How this all plays out in the wild is hard to assess. Eisen noted that other factors that could impact the microbiome include nutrients in the water, water temperature, diet, and salt concentration. Another, perhaps more direct complication: Contaminants can appear simultaneously, and in different amounts, Petitjean said. For instance, one 2016 paper shows that 13 percent of 426 pollutants in European rivers have been shown to be neuroactiv

Another complication is simply that not all organisms will act the same — even within the same species. According to Eisen, model organisms, such as zebrafish, are chosen to represent a wide range of species, just as mice are often used to study human health in medical research. But changes to pollutants and other factors could differ from species to species. Bertram noted that using model organisms saves researchers the trouble of studying every single species, but also that there should be more studies into different fish.

At face value, some behavior changes might not even look that bad. Increased mating behavior — like in the case of guppies exposed to fluoxetine — could seem like a boon for the species. However, one species thriving over another tends to throw natural habitats out of whack, Bertram said. His previous work suggests that Prozac similarly increases invasive eastern mosquitofish mating behavior. This could help it thrive and outcompete native species. Additionally, at some concentrations, cadmium can increase fish activity, potentially helping them find food. However, the more they eat, Petitjean said, the more exposed they could be to microplastics.

Given these circumstances, he added, experiments in the lab need to inject as much complexity as possible into their methods to better replicate real, wild systems. Some research does try this. Bertram’s work showed the test guppies either a predatory or a similarly sized, non-predatory fish prior to their experiments, while Gulizia and her team performed parts of their experiment in the wild. Some studies also expose fish species to water taken from the environment — and the pollutants that come with it.

Despite the unknowns, Bertram said that changes to how fish go about socializing, mating, or finding food are unlikely to be good. “At the end of the day,” he continued, “any change to the expression of natural behaviors will have negative, unintended consequences.”

This article was originally published on Undark. Read the original article.

Fish photo

The post Plastic, pollution, and prescription drugs are making fish act erratically appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>